We're unable to sign you in at this time. Please try again in a few minutes.
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Investigation |

Implications of Intraoperative Vascular Surgery Assistance for Hospitals and Vascular Surgery Trainees ONLINE FIRST

Tadaki M. Tomita, MD1; Heron E. Rodriguez, MD1; Andrew W. Hoel, MD1; Karen J. Ho, MD1; William H. Pearce, MD1; Mark K. Eskandari, MD1
[+] Author Affiliations
1Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
JAMA Surg. Published online August 03, 2016. doi:10.1001/jamasurg.2016.2247
Text Size: A A A
Published online

Importance  Vascular surgeons possess a skill set that allows them to assist nonvascular surgeons in the operating room. Existing studies on this topic are limited in their scope to specific procedures or clinical settings.

Objective  To describe the broad spectrum of cases that require intraoperative vascular surgery assistance.

Design, Setting, and Participants  A retrospective medical record review of patients undergoing nonvascular surgery procedures that required intraoperative vascular surgery assistance between January 2010 and June 2014 at a single urban academic medical center (Northwestern Memorial Hospital, Chicago, Illinois). Trauma patients and inferior vena cava filter placements were excluded.

Exposures  Intraoperative vascular surgery assistance stratified by need for vascular reconstruction, anatomic location, urgency of consultation, and timing of consultation.

Main Outcomes and Measures  A composite primary end point of death, myocardial infarction, or unplanned return to the operating room within 30 days of the index operation.

Results  We identified 299 patients involving 12 different surgical subspecialties that met the study criteria. The cohort included 148 men (49.5%) and had a mean (SD) age of 56.4 (15) years. Most consultations occurred preoperatively (n = 224; 74.9%; odds ratio, 0.04; 95% CI, 0.02-0.08; P < .001) and were elective (n = 212; 70.9%; odds ratio, 0.06; 95% CI, 0.03-0.12; P < .001 ). The indications for vascular surgery assistance were 156 spine exposure (52%), 43 vascular control without hemorrhage (14.4%), 43 control of hemorrhage (14.4%), and 57 vascular reconstruction (19%). Vascular repairs consisted of 13 bypasses (4.3%), 18 patch angioplasties (6.0%), and 79 primary repairs (26.4%). All procedures required open surgical exposure by the vascular surgeon. The incidence of death, myocardial infarction, or unplanned return to the operating room was 11.4% for the cohort with a mortality rate of 1.7%. Patients who required vascular repair had a higher incidence of death, myocardial infarction, or unplanned return to the operating room (17.4% vs 7.9%; P = .01). These cases resulted in an additional 1371.46 work relative value units per year.

Conclusions and Relevance  Vascular surgeons provide crucial operative support across multiple specialties. Although vascular reconstruction is not needed in most patients, it may be associated with increased risk of death, myocardial infarction, or unplanned return to the operating room. The high proportion of emergent cases that require vascular repair demonstrates the importance of having vascular surgeons immediately available at the hospital. To continue providing this valuable service, vascular surgery trainees need to continue to learn the full breadth of open anatomic exposures and vascular reconstruction.

Figures in this Article


Place holder to copy figure label and caption
Prevalence of Intraoperative Vascular Surgery Assistance by Surgical Subspecialty
Graphic Jump Location




Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.


Some tools below are only available to our subscribers or users with an online account.

0 Citations

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?

Related Content

Customize your page view by dragging & repositioning the boxes below.

See Also...
Articles Related By Topic
Related Collections
PubMed Articles