We're unable to sign you in at this time. Please try again in a few minutes.
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Investigation |

Epidemiology of Fracture Nonunion in 18 Human Bones ONLINE FIRST

Robert Zura, MD1; Ze Xiong, MS2; Thomas Einhorn, MD3; J. Tracy Watson, MD4; Robert F. Ostrum, MD5; Michael J. Prayson, MD6; Gregory J. Della Rocca, MD, PhD7; Samir Mehta, MD8; Todd McKinley, MD9; Zhe Wang, MS2; R. Grant Steen, PhD10
[+] Author Affiliations
1Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina
2Department of Statistics, North Carolina State University, Raleigh
3Department of Orthopaedic Surgery, New York University Langone Medical Center, New York
4Department of Orthopaedic Surgery, Saint Louis University School of Medicine, St. Louis, Missouri
5Department of Orthopaedic Surgery, University of North Carolina, Chapel Hill
6Department of Orthopaedics and Sports Medicine, Wright State University, Dayton, Ohio
7Department of Orthopaedic Surgery, University of Missouri, Columbia
8Department of Orthopaedic Surgery, Hospital of the University of Pennsylvania, Philadelphia
9Department of Orthoapaedic Surgery, Indiana University, Indianapolis
10Medical Affairs, Bioventus LLC, Durham, North Carolina
JAMA Surg. Published online September 07, 2016. doi:10.1001/jamasurg.2016.2775
Text Size: A A A
Published online

Importance  Failure of bone fracture healing occurs in 5% to 10% of all patients. Nonunion risk is associated with the severity of injury and with the surgical treatment technique, yet progression to nonunion is not fully explained by these risk factors.

Objective  To test a hypothesis that fracture characteristics and patient-related risk factors assessable by the clinician at patient presentation can indicate the probability of fracture nonunion.

Design, Setting, and Participants  An inception cohort study in a large payer database of patients with fracture in the United States was conducted using patient-level health claims for medical and drug expenses compiled for approximately 90.1 million patients in calendar year 2011.The final database collated demographic descriptors, treatment procedures as per Current Procedural Terminology codes; comorbidities as per International Classification of Diseases, Ninth Revision codes; and drug prescriptions as per National Drug Code Directory codes. Logistic regression was used to calculate odds ratios (ORs) for variables associated with nonunion. Data analysis was performed from January 1, 2011, to December 31, 2012,

Exposures  Continuous enrollment in the database was required for 12 months after fracture to allow sufficient time to capture a nonunion diagnosis.

Results  The final analysis of 309 330 fractures in 18 bones included 178 952 women (57.9%); mean (SD) age was 44.48 (13.68) years. The nonunion rate was 4.9%. Elevated nonunion risk was associated with severe fracture (eg, open fracture, multiple fractures), high body mass index, smoking, and alcoholism. Women experienced more fractures, but men were more prone to nonunion. The nonunion rate also varied with fracture location: scaphoid, tibia plus fibula, and femur were most likely to be nonunion. The ORs for nonunion fractures were significantly increased for risk factors, including number of fractures (OR, 2.65; 95% CI, 2.34-2.99), use of nonsteroidal anti-inflammatory drugs plus opioids (OR, 1.84; 95% CI, 1.73-1.95), operative treatment (OR, 1.78; 95% CI, 1.69-1.86), open fracture (OR, 1.66; 95% CI, 1.55-1.77), anticoagulant use (OR, 1.58; 95% CI, 1.51-1.66), osteoarthritis with rheumatoid arthritis (OR, 1.58; 95% CI, 1.38-1.82), anticonvulsant use with benzodiazepines (OR, 1.49; 95% CI, 1.36-1.62), opioid use (OR, 1.43; 95% CI, 1.34-1.52), diabetes (OR, 1.40; 95% CI, 1.21-1.61), high-energy injury (OR, 1.38; 95% CI, 1.27-1.49), anticonvulsant use (OR, 1.37; 95% CI, 1.31-1.43), osteoporosis (OR, 1.24; 95% CI, 1.14-1.34), male gender (OR, 1.21; 95% CI, 1.16-1.25), insulin use (OR, 1.21; 95% CI, 1.10-1.31), smoking (OR, 1.20; 95% CI, 1.14-1.26), benzodiazepine use (OR, 1.20; 95% CI, 1.10-1.31), obesity (OR, 1.19; 95% CI, 1.12-1.25), antibiotic use (OR, 1.17; 95% CI, 1.13-1.21), osteoporosis medication use (OR, 1.17; 95% CI, 1.08-1.26), vitamin D deficiency (OR, 1.14; 95% CI, 1.05-1.22), diuretic use (OR, 1.13; 95% CI, 1.07-1.18), and renal insufficiency (OR, 1.11; 95% CI, 1.04-1.17) (multivariate P < .001 for all).

Conclusions and Relevance  The probability of fracture nonunion can be based on patient-specific risk factors at presentation. Risk of nonunion is a function of fracture severity, fracture location, disease comorbidity, and medication use.

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?





Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.


Some tools below are only available to our subscribers or users with an online account.

0 Citations

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
PubMed Articles

The Rational Clinical Examination: Evidence-Based Clinical Diagnosis
Alcohol Abuse

The Rational Clinical Examination: Evidence-Based Clinical Diagnosis
Original Article: A Primer on the Precision and Accuracy of the Clinical Examination