0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Article |

Selective Decontamination of the Digestive Tract in Surgical Patients:  A Systematic Review of the Evidence FREE

Avery B. Nathens, MD, PhD, FRCSC; John C. Marshall, MD, FRCSC
[+] Author Affiliations

From the Division of General Surgery, The Toronto Hospital (Dr Marshall), and the Department of Surgery, University of Toronto (Dr Nathens), Toronto, Ontario.


Arch Surg. 1999;134(2):170-176. doi:10.1001/archsurg.134.2.170.
Text Size: A A A
Published online

Objective  To determine the comparative efficacy of selective decontamination of the digestive tract in critically ill surgical and medical patients, and in selected subgroups of surgical patients with pancreatitis, major burn injury, and those undergoing major elective surgery and transplantation.

Data Sources  The MEDLINE database was searched from January 1966 to December 1996 using the terms "decontamination or prophylaxis," "intensive care units," and "antibiotics." The search was limited to English-language studies evaluating the efficacy of selective decontamination of the digestive tract in human subjects.

Study Selection  The primary review was restricted to prospective randomized trials.

Data Extraction  End points of interest included rates of nosocomial pneumonia, bacteremia, urinary tract infection, wound infection, mortality, and length of intensive care unit stay. Methodologic quality of individual studies was assessed using a previously described model.

Data Synthesis  Odds ratios (ORs) together with their (95% confidence interval [CIs]) were reported and determined using the Mantel-Haenszel method. Mortality was significantly reduced with the use of selective decontamination of the digestive tract in critically ill surgical patients (OR, 0.7; 95% CI, 0.52-0.93), while no such effect was demonstrated in critically ill medical patients (OR, 0.91; 95% CI, 0.71-1.18). The greatest effect was demonstrated in studies where both the topical and systemic components of the regimen were used. Rates of pneumonia were reduced in both subsets of patients, while those of bacteremia were significantly reduced only in surgical patients.

Conclusions  Selective decontamination of the digestive tract notably reduces mortality in critically ill surgical patients, while critically ill medical patients derive no such benefit. These data suggest that the use of selective decontamination of the digestive tract should be limited to those populations in whom rates of nosocomial infection are high and in whom infection contributes notably to adverse outcome.

Figures in this Article

SELECTIVE decontamination of the digestive tract (SDD) is an infection prophylaxis regimen that employs topical and oral nonabsorbable antibiotics to eradicate pathogenic organisms from the gastrointestinal (GI) tract. The regimen was first used in patients with neutropenic leukemia undergoing induction therapy with promising results.1 In 1983, Stoutenbeek et al2 adapted the technique of SDD to patients in an intensive care unit (ICU) setting; the first clinical trial in a homogeneous group of multiple trauma patients was described the following year.3 Since then, at least 25 controlled clinical trials and 4 meta-analyses47 evaluating the technique have been reported; however, although SDD is widely used in European ICUs, it has not found favor in North America.

The microbiologic rationale for SDD derives from clinical and experimental studies on the normal GI tract flora and its changes in critical illness. The indigenous flora of the oropharynx and GI tract is remarkably constant over time. Mechanisms preventing overgrowth with potentially pathogenic organisms include salivary flow,8 gastric acidity,9 bile acids,10 secretory IgA,11 and peristalsis. In addition, obligate anaerobic bacteria contribute to the prevention of colonization of the digestive tract by facultative anaerobic and potentially pathogenic bacteria and yeasts, a phenomenon referred to as colonization resistance.

In the critically ill patient, the mechanisms limiting overgrowth of potentially pathogenic organisms are compromised by the underlying disease processes, instrumentation, and medication that result in impairment of salivary flow, gastric alkalization, cholestasis, and intestinal ileus. In addition, the use of broad-spectrum antibiotics eradicates the anaerobic flora, leading to a loss of colonization resistance. The net result is that within days of admission to an ICU, the relatively avirulent indigenous flora is replaced by a variety of potentially pathogenic species. Abnormal gastric colonization develops within days in more than two thirds of patients admitted to an ICU; the most common isolates include Candida albicans, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus, and coagulase-negative Staphylococcus,12,13 the predominant infecting species of nosocomial ICU-acquired infection.

Many descriptive studies have shown an association between pathologic, oropharyngeal, and gastric colonization and the development of nosocomial infection.1417 Interventional studies in which normal gastric acidity is maintained by the use of cytoprotective agents support, but do not confirm, a role for altered gastric flora in the pathogenesis of ventilator-associated pneumonia.18,19 Aspiration of contaminated upper GI tract fluid is the most plausible and readily demonstrable mechanism of infection with proximal gut organisms.20,21 Alternatively, proximal GI tract colonization may lead to translocation of viable organisms through an intact gut wall. Although a well-established phenomenon in animal models,22,23 translocation has not been conclusively demonstrated in humans.24

The standard SDD regimen consists of 2 components. Topical, nonabsorbed polymyxin E, tobramycin, and amphotericin B, a combination active against essentially all aerobic gram-negative bacteria and fungi.25 These antibiotics have limited activity against the normal anaerobic flora and maintain normal colonization resistance.26 In addition, intravenous cefotaxime sodium is administered until surveillance cultures demonstrate adequate decontamination of the GI tract, generally 4 days following the initiation of SDD. Cefotaxime treats early established infection by community-acquired pathogens, particularly Streptococcus pneumoniae or Haemophilus influenzae, that may be aspirated during intubation, and temporizes until the enterally administered antibiotics have adequately decontaminated the GI tract. Selective decontamination of the digestive tract is initiated as soon as possible following admission and is continued until cessation of mechanical ventilation or discharge from the ICU.

The disparate results of clinical trials in different patient populations suggest that the practice may benefit select groups of patients. Its role in surgical patients has not been explicitly evaluated, although surgical patients might be anticipated to show particular benefit. Rates of nosocomial pneumonia seem to be higher in critically ill surgical patients than in patients admitted to a medical ICU, and the mortality attributable to nosocomial pneumonia is notably greater in the surgical subpopulation.27 On the other hand, concerns have been voiced that a reduction in rates of pneumonia in SDD studies does not seem to result in improved outcome and that widespread adoption of the technique may contribute to the emergence of antibiotic resistance.

To evaluate the utility of SDD in surgical patients, we conducted a formal, systematic, English-literature review using an evidence-based methodology28 that generates recommendations based on the strength of positive evidence provided by clinical studies. Grade A recommendations are supported by level I evidence that reflects statistically significant conclusions from randomized, controlled trials and provides a strong argument for adopting the therapy evaluated. Grade B recommendations are supported by level II evidence; and grade C recommendations, by level III, IV, or V evidence. Grade B and C recommendations provide less convincing evidence of therapeutic efficacy and justify either adoption or withholding of the therapy in question. Notable differences in the response to SDD in surgical, as compared with medical, ICU patients are evident, justifying a grade A recommendation in support of the use of routine SDD prophylaxis in critically ill surgical patients. Selective decontamination of the digestive tract shows evidence of clinical benefit in subpopulations of surgical patients as well, although the limited sample sizes of published studies preclude definitive conclusions regarding its use in specific subgroups.

The MEDLINE database from January 1966 to December 1996 was searched using the search terms "decontamination or prophylaxis," "intensive care units," and "antibiotics." Titles and abstracts were also searched during this period for the term "decontamination." Additional citations were obtained from several recent meta-analyses46 and through personal communications from other investigators involved in primary studies. The primary review was restricted to prospective, randomized, or consecutive trials. Studies using historic controls were reviewed only in patient populations where limited data exist. Studies were considered to have enrolled surgical patients if at least 75% of the subjects evaluated had been admitted following trauma or major surgery. Studies were considered to have enrolled medical patients when fewer than 25% of patients met this criterion.

Methodologic quality of the studies selected for this systematic review was evaluated using a model previously described by Heyland et al29 (Table 1). Odds ratios (ORs) and pooled ORs together with their 95% confidence intervals (CIs) were reported and determined using the Mantel-Haenszel method. An OR of less than 1.0 suggests that SDD results in a reduction in the relative odds of dying or developing a nosocomial infection.

Table Graphic Jump LocationTable 1. Criteria Used to Assess Methodologic Quality*
SDD IN CRITICALLY ILL SURGICAL PATIENTS

Eleven randomized prospective studies have been published on the use of SDD in surgical ICU patients.3040 All of the available studies are limited in their sample size, and thus have insufficient power to detect even modest reductions in mortality. The OR for mortality in patients treated with SDD was less than 1 in 8 of the 11 trials, with 1 demonstrating a significant reduction in mortality34 (Figure 1). The pooled OR for these 11 trials is 0.70, with CIs indicating at worst a 7% and at best a 48% reduction in the odds of death in surgical ICU patients treated with SDD (Table 2). Separate analysis of studies in which systemic antimicrobial therapy was administered32,34,35,38,40 compared with those with only the topical components of the regimen30,31,33,36,37,39 demonstrated the greatest survival benefit in the former group. The effect of SDD on rates of nosocomial infection in surgical patients is similarly evident. Nine of 10 assessable trials demonstrated a statistically significant reduction in the rate of nosocomial pneumonia, with a pooled OR of 0.19. There is a significant reduction in bacteremic episodes and urinary tract infections in patients treated with SDD while wound infection rates are unaffected (Table 2). Only 1 of 8 assessable studies demonstrated a clear reduction in length of ICU stay,37 although there is a significant reduction in the pooled length of stay in these 8 studies (for control patients, 16.9±13 days vs 15.2±12.5 days for SDD patients; P<.05, t test). All values are expressed as mean±SD.

Place holder to copy figure label and caption
Figure 1

The effect of selective decontamination of the digestive tract on mortality in critically ill surgical patients. Odds ratios and the 95% confidence intervals (CI) in 11 studies with more than 75% postoperative or trauma patients are demonstrated.

Graphic Jump Location
Table Graphic Jump LocationTable 2. Efficacy on Mortality and Nosocomial Infection Rates of Selective Decontamination of the Digestive Tract, Surgical vs Medical Intensive Care Units
SDD IN CRITICALLY ILL MEDICAL PATIENTS

Ten prospective, randomized, controlled clinical trials of SDD have been carried out in critically ill medical patients.4150 Similar to the trials in critically ill surgical patients, almost all of the studies lack sufficient power to detect a clinically significant reduction in mortality. Only 1 study (445 evaluable patients) had adequate power to detect a 25% reduction in mortality. This trial failed to demonstrate any notable survival benefit in patients receiving SDD.43 In contrast to most of the other studies, systemic antimicrobial therapy was not administered. The pooled OR for a reduction in mortality using SDD prophylaxis in medical patients is 0.91 with the upper limit of the CI being more than 1.0 (Figure 2). Even if the analysis is limited to studies in which systemic antimicrobials are administered,41,42,44,46,47,49 the effect on survival fails to reach statistical significance (Table 2). Selective decontamination of the digestive tract had a significant effect in reducing episodes of nosocomial pneumonia and urinary tract infections in medical patients (Table 2); however, there was no reduction in the risk of bacteremia (OR, 0.77) or length of ICU stay (for controls patients, 16.7±16 days vs 16.8±13 days for SDD patients).

Place holder to copy figure label and caption
Figure 2

The effect of selective decontamination of the digestive tract on mortality in critically ill medical patients. Odds ratios and the 95% confidence intervals (CIs) in 10 studies with 25% or fewer postoperative or trauma patients are demonstrated.

Graphic Jump Location

To rule out the possibility that differences in the methodologic quality of the clinical trials evaluating medical and surgical patients accounted for the differential benefit seen in surgical patients, a formalized assessment of the quality of the individual trials was performed as described in the "Materials and Methods" section. Methodologic quality scores were similar in medical (7.6±1.9) and surgical trials (7.9±2.3), suggesting that the conduct of the study did not account for the differential results observed.

Data from meta-analyses and from subset analysis of critically ill medical and surgical patients provide sufficient level I and II evidence for a grade A recommendation for the use of SDD in critically ill surgical patients as a prophylactic measure to reduce mortality. Topical antimicrobial therapy should be used in conjunction with a short course of systemic antibiotics.

SDD IN TRANSPLANTATION

Infection contributes to mortality in patients undergoing solid-organ transplantation.51 Selective decontamination of the digestive tract has only been formally evaluated in patients undergoing orthotopic liver transplantation. Case series and retrospective studies suggest a reduction in rates of infection when compared with historic controls.5255 There are 3 randomized prospective studies of SDD in liver transplantation5658 (Table 3) that show a reduction in rates of nosocomial infection and a modest improvement in survival. Support for the use of SDD in liver transplantation is based on level II evidence and is given a grade B recommendation. Further studies are required in both liver transplant and other solid-organ recipients to provide adequate power to determine whether a true survival benefit exists.

Table Graphic Jump LocationTable 3. Randomized Trials of Selective Decontamination of the Digestive Tract (SDD) in Liver Transplantation and Cardiac Surgery*
SDD IN MAJOR ELECTIVE SURGERY

Selective decontamination of the digestive tract has been most extensively studied in cardiac surgical patients, a homogeneous group of patients undergoing major elective surgery.5962 Randomized trials show a reduction in rates of infection, but not mortality, in a group of patients with a low baseline mortality rate5961 (Table 3), and reduced levels of endotoxin and interleukin 6 in the postoperative period.61

The role of SDD vs standard perioperative antibiotic prophylaxis in patients undergoing elective esophageal resection for carcinoma has been examined in a prospective, randomized study.63 Selective decontamination of the digestive tract resulted in a significant reduction in rates of pneumonia (14% vs 2%) and wound infections (35% vs 11%) without a reduction in the length of hospital stay or mortality (2% vs 3%). The effectiveness of SDD in patients undergoing total gastrectomy and esophagojejunal anastomosis has been evaluated in a designed prospective multicenter study.64 Selective decontamination of the digestive tract initiated the evening prior to the procedure resulted in a significant reduction in the rate of anastomotic leaks (10.9% vs 2.9%), pneumonia (22.3% vs 8.8%), and mortality (10.6% vs 4.9%).

Although SDD can reduce the incidence of postoperative infection in patients undergoing cardiac surgery, its routine use is probably unnecessary. Risk factors for infection and mortality in cardiac surgery have been clearly elucidated, and include Acute Physiology and Chronic Health Evaluation II scores greater than 19 in the first 24 hours,65 prolonged use of an intra-aortic balloon pump,66 and prolonged mechanical ventilation (>72 hours).67 It is recommended that SDD be considered for high-risk cardiac surgical patients. This is a grade B recommendation based on 4 level II clinical trials. The use of SDD as a method of infection prophylaxis in patients undergoing esophageal and gastric resection seems promising. Although these data cannot necessarily be extrapolated to all patients undergoing operations on the GI tract, it would seem that patients undergoing upper GI tract surgery derive benefit through a reduction in the risk of aspiration pneumonia. It is recommended that SDD be considered for patients undergoing upper GI tract surgery as a form of infection prophylaxis. This is a grade B recommendation based on level II data.

SDD IN THERMAL INJURY

The development of gram-negative bacteremia or nosocomial pneumonia following thermal injury is associated with an increased risk of death.68,69 To our knowledge, there are no prospective randomized studies evaluating the efficacy of SDD in burn patients. Mackie et al70 described a series of 31 consecutive patients with burns of greater than 30% of total body surface area who were treated with SDD, comparing them with a group of 33 historic controls. The incidence of respiratory tract infections (27.3% vs 6.5%) and bacteremias (24.2% vs 3.2%) was reduced, with a concomitant reduction in mortality (21.2% vs 3.2%); however, there was no reduction in length of hospital stay. Although promising, data on the role of SDD prophylaxis following thermal injury are retrospective and must be interpreted with due consideration. On the basis of level IV evidence, the use of SDD in patients with significant thermal injury is awarded a grade C recommendation. There is a need for well-designed prospective studies in this patient population.

SDD IN ACUTE PANCREATITIS

In a prospective randomized trial of SDD in acute pancreatitis, Luiten et al71 demonstrated a 50% reduction in the incidence of infected pancreatic necrosis (38% vs 18%). Patients receiving SDD required fewer laparotomies and had a significant reduction in mortality when stratified by Imrie score, with Imrie scores of 3 or higher obtaining the greatest survival benefit. A small, retrospective study72 of critically ill patients receiving mechanical ventilation examined the effects of SDD on patients with pancreatitis compared with historic controls. This study demonstrated a reduction in the incidence of bacteremia and nosocomial pneumonia in patients poorly matched for both Acute Physiology and Chronic Health Evaluation score and Ranson criteria. It is recommended that SDD be considered in patients with severe acute pancreatitis. This grade B recommendation is based on a single level I study.

The results of this meta-analysis show that the technique of SDD can benefit surgical patients. Selective decontamination of the digestive tract reduces rates of nosocomial pneumonia and bacteremia and nosocomial infections at remote sites. More importantly, it has a statistically significant effect on mortality. The best estimate for this effect is a 30% reduction in ICU mortality with CIs narrow enough to all but exclude the possibility of a type I error. This mortality effect is larger than that seen with other prophylactic modalities that have become standard care in surgical practice, including those that prevent deep venous thrombosis and pulmonary embolism73 or surgical wound infections.74

Nonetheless, SDD has not been widely adopted as a prophylactic measure. There are several possible explanations for this. Pharmaceutical-grade preparations of polymyxin E and amphotericin B for topical use are not readily available. As a result, centers that have adopted the SDD technique have had to use intravenous preparations at substantially greater cost and local hospital pharmacies must prepare the SDD paste and suspension. The cost of SDD in the ICU setting has received only passing attention. In the 21 studies evaluating the efficacy of SDD in the ICU, 6 make no reference to overall antibiotic use.33,36,41,45,48,49 In 4 studies, overall antibiotic costs were higher in patients receiving SDD.34,42,43,50 In only 1 study was total antibiotic cost lower in the treatment group.39 Further, no attempt has been made to estimate costs related to microbiologic surveillance. With currently available data, it is not possible to conclude that SDD is a cost-effective, infection prevention strategy.

Although available data show no increase in the prevalence of resistant gram-negative organisms in patients managed with SDD (and indeed SDD has been promoted as a potential method of decontaminating patients with resistant gram-negative organisms48), its safety in centers where resistant gram-positive organisms are common has not been established. Several studies have documented an increase in rates of isolation of gram-positive organisms, particularly Staphylococcus aureus,37,42,43 coagulase-negative Staphylococcus, and Enterococcus34,37,38 when SDD is implemented. The spectrum of resistance is poorly reported. Gentamicin sulfate–resistant enterococci were prevalent in one study; however, surveillance cultures were not performed on the control group.38 In another study, a notable increase in methicillin-resistant S aureus colonization in patients receiving SDD compared with controls was documented.42 Resistant gram-negative organisms seem to be less of a concern; however, tobramycin-resistant, aerobic, gram-negative bacilli have been reported in 2 studies.34,35 Although notably overt infection with resistant organisms has not been reported with the use of SDD, this potential exists, and routine surveillance cultures may be necessary to allow for the early detection of antimicrobial resistance.

Meta-analyses show that SDD has a favorable effect on both nosocomial infection and ICU mortality when it is used as standard prophylactic therapy for critically ill surgical patients. Yet the technique is not widely employed in North America but rather viewed with suspicion and skepticism by many. The appropriate resolution of such a state of clinical equipoise is a randomized, double-blind, placebo-controlled, clinical trial,75 and we believe it is important that such a trial be undertaken. This trial should evaluate a homogeneous group of patients at high risk for infection-related morbidity and mortality; for example, victims of multiple trauma or patients undergoing solid-organ transplantation. It must have an objective primary end point, namely, ICU mortality, and be adequately powered to include or exclude a clinically important mortality effect. It must also incorporate the microbiologic surveillance that will permit definitive conclusions regarding the effect of SDD on the microbial ecology and resistance patterns in patients undergoing cardiac surgery. Finally, the study should incorporate a control group of patients receiving systemic but not topical prophylaxis. A prospective, randomized trial of SDD in trauma patients showed comparable outcomes in a control group receiving systemic antimicrobial prophylaxis alone.76

Corresponding author: John C. Marshall, MD, FRCSC, The Toronto Hospital, EN 9-234, 200 Elizabeth St, Toronto, Ontario, Canada M5G 2C4 (e-mail: jmarshall@torhosp.toronto .on.ca).

Sleifer  DTMulder  NHde Vries-Hospers  HG  et al.  Infection prevention in granulocytopenic patients by selective decontamination of the digestive tract. Eur J Cancer. 1980;16859- 868
Link to Article
Stoutenbeek  CPVan Saene  HKMiranda  DRZandstra  DF A new technique of infection prevention in the intensive care unit by selective decontamination of the digestive tract. Acta Anaesthesiol Belg. 1983;34209- 221
Stoutenbeek  CPVan Saene  HKFMiranda  DRZandstra  DF The effect of selective decontamination of the digestive tract on colonisation and infection rate in multiple trauma patients. Intensive Care Med. 1984;10185- 192
Link to Article
Selective Decontamination of the Digestive Tract Trialists' Collaborative Group, Meta-analysis of randomised controlled trials of selective decontamination of the digestive tract. BMJ. 1993;307525- 532
Link to Article
Heyland  DKCook  DJJaeschke  RGriffith  LLee  HNGuyatt  GH Selective decontamination of the digestive tract: an overview. Chest. 1994;1051221- 1229
Link to Article
Kollef  MH The role of selective digestive tract decontamination on mortality and respiratory tract infections: a meta-analysis. Chest. 1994;1051101- 1108
Link to Article
D'Amico  RPifferi  SLeonetti  CTorri  VTinazzi  ALiberati  Afor the study investigators, Effectiveness of antibiotic prophylaxis in critically ill adult patients: systematic review of randomized controlled trials. BMJ. 1998;3161275- 1285
Link to Article
Gibson  GBarrett  E The role of salivary function on oropharyngeal colonization. Spec Care Dentist. 1992;12153- 156
Link to Article
Driks  MRCraven  DECelli  BR  et al.  Nosocomial pneumonia in intubated patients given sucralfate as compared with antacids or histamine type 2 blockers: the role of gastric colonization. N Engl J Med. 1987;3171376- 1382
Link to Article
Floch  MHGershengoren  WElliott  SSpiro  HM Bile acid inhibition of the intestinal microflora: a function for simple bile acids. Gastroenterology. 1971;61228- 233
Mcloughlin  GAHede  JETemple  JGBradley  JChapman  DMMcFarland  J The role of IgA in the prevention of bacterial colonization of the jejunum in the vagotomized subject. Br J Surg. 1978;65435- 437
Link to Article
Cade  JFMcOwat  ESiganporia  RKeighley  CPresneill  JSinickas  V Uncertain relevance of gastric colonization in the seriously ill. Intensive Care Med. 1992;18210- 217
Link to Article
Marshall  JCChristou  NVHorn  RMeakins  JL The microbiology of multiple organ failure: the proximal gastrointestinal tract as an occult reservoir of pathogens. Arch Surg. 1988;123309- 315
Link to Article
Johanson  WGPierce  AKSanford  JPThomas  GD Nosocomial respiratory infections with gram-negative bacilli. Ann Intern Med. 1972;77701- 706
Link to Article
du Moulin  GCHedley-White  JPaterson  DGLisbon  A Aspiration of gastric bacteria in antacid-treated patients: a frequent cause of postoperative colonization of the airway. Lancet. 1982;1242- 244
Link to Article
Simms  HHDeMaria  EMcDonald  LPeterson  DRobinson  ABurchard  KW Role of gastric colonization in the development of pneumonia in critically ill trauma patients: results of a prospective randomized trial. J Trauma. 1991;31531- 537
Link to Article
Marshall  JCChristou  NVMeakins  JL The gastrointestinal tract: the "undrained abscess" of multiple organ failure. Ann Surg. 1993;218111- 119
Link to Article
Cook  DJLaine  LAGuyatt  GHRaffin  TA Nosocomial pneumonia and the role of gastric pH: a meta-analysis. Chest. 1991;1007- 13
Link to Article
Cook  DJGuyatt  GHMarshall  JC  et al. for the Canadian Critical Care Trials Group, A randomized trial of sucralfate versus ranitidine for stress ulcer prophylaxis in critically ill patients. N Engl J Med. 1998;338791- 797
Link to Article
Kingston  GWPhang  PTLeathley  MJ Increased incidence of nosocomial pneumonia in mechanically ventilated patients with subclinical aspiration. Am J Surg. 1991;161589- 592
Link to Article
Torres  ASerra-Batlles  JRos  E  et al.  Pulmonary aspiration of gastric contents in patient receiving mechanical ventilation: the effect of body position. Ann Intern Med. 1992;116540- 543
Link to Article
Deitch  EAWinterton  JBerg  R The gut as a portal of entry for bacteremia. Ann Surg. 1987;205681- 692
Link to Article
Jones  WGMinei  JPBarber  AERayburn  JLFahey  TJShires  GT Bacterial translocation and intestinal atrophy after thermal injury and burn wound sepsis. Ann Surg. 1990;211399- 405
Link to Article
Moore  FAMoore  EEPoggetti  R  et al.  Gut bacterial translocation via the portal vein: a clinical perspective with major torso trauma. J Trauma. 1991;31629- 638
Link to Article
Van Saene  HKStoutenbeek  CPHart  CA Selective decontamination of the digestive tract (SDD) in intensive care patients: a critical evaluation of the clinical, bacteriological and epidemiological benefits. J Hosp Infect. 1991;18261- 277
Link to Article
van der Waaij  DAberson  JThijm  HAWelling  GW The screening of four aminoglycosides in the selective decontamination of the digestive tract in mice. Infection. 1982;1035- 40
Link to Article
Cunnion  KMWeber  DJBroadhead  WEHanson  LCPieper  CFRutala  WA Risk factors for nosocomial pneumonia: comparing adult critical-care populations. Am J Respir Crit Care Med. 1996;153158- 162
Link to Article
Cook  DJGuyatt  GHLaupacis  ASackett  DL Rules of evidence and clinical recommendations on the use of antithrombotic agents. Chest. 1992;102305S- 311S
Heyland  DKCook  DJKing  DKernerman  PBrun-Buisson  C Maximizing oxygen delivery in critically ill patients: a methodologic appraisal of the evidence. Crit Care Med. 1996;24517- 524
Link to Article
Unertl  KRuckdeschel  GSelbmann  HK  et al.  Prevention of colonization and respiratory infections in long-term ventilated patients by local antimicrobial prophylaxis. Intensive Care Med. 1987;13106- 113
Link to Article
Korinek  AMLaisne  MJNicolas  MHRaskine  LDeroin  VSanson-Lepors  MJ Selective decontamination of the digestive tract in neurosurgical intensive care unit patients: a double-blind, randomized, placebo-controlled study. Crit Care Med. 1993;211466- 1473
Link to Article
Kerver  AJRommes  JHMevissen-Verhage  EA  et al.  Prevention of colonization and infection in critically ill patients: a prospective randomized study. Crit Care Med. 1988;161087- 1093
Link to Article
Godard  JGuillaume  MEBachmann  B  et al.  Intestinal decontamination in a polyvalent ICU: a double-blind study. Intensive Care Med. 1990;16307- 311
Link to Article
Rocha  LAMartin  MJPita  S  et al.  Prevention of nosocomial infection in critically ill patients by selective decontamination of the digestive tract: a randomized, double blind, placebo-controlled study. Intensive Care Med. 1992;18398- 404
Link to Article
Blair  PRowlands  BJLowry  KWebb  HArmstrong  PSmilie  J Selective decontamination of the digestive tract: a stratified, randomized, prospective study in a mixed intensive care unit. Surgery. 1991;110303- 310
Pugin  JAuckenthaler  RLew  DPSuter  PM Oropharyngeal decontamination decreases incidence of ventilator-associated pneumonia: a randomized, placebo-controlled, double-blind clinical trial. JAMA. 1991;2652704- 2710
Link to Article
Cerra  FBMaddaus  MADunn  DL  et al.  Selective gut decontamination reduces nosocomial infections and length of stay but not mortality or organ failure in surgical intensive care unit patients. Arch Surg. 1992;127163- 169
Link to Article
Cockerill  FRMuller  SRAnhalt  JP  et al.  Prevention of infection in critically ill patients by selective decontamination of the digestive tract. Ann Intern Med. 1992;117545- 553
Link to Article
Quinio  BAlbanese  JBues-Charbit  MViviand  XMartin  C Selective decontamination of the digestive tract in multiple trauma patients. Chest. 1996;109765- 772
Link to Article
Stoutenbeek  CPVan Saene  HKFZandstra  DF Prevention of multiple organ system failure by selective decontamination of the digestive tract in multiple trauma patients. Faist  EBaue  AESchildberg  FWeds.The Immune Consequences of Trauma, Shock and Sepsis—Mechanisms and Therapeutic Approaches. Berlin, Germany Pabst Science Publishers1996;1055- 1066
Ferrer  MTorres  AGonzalez  J  et al.  Utility of selective digestive decontamination in mechanically ventilated patients. Ann Intern Med. 1994;120389- 395
Link to Article
Hammond  JMPotgieter  PDSaunders  GLForder  AA Double-blind study of selective decontamination of the digestive tract in intensive care. Lancet. 1992;3405- 9
Link to Article
Gastinne  HWolff  MDelatour  FFaurisson  FChevret  S A controlled trial in intensive care units of selective decontamination of the digestive tract with nonabsorbable antibiotics. N Engl J Med. 1992;326594- 599
Link to Article
Ulrich  CHarinck-de Weerd  JEBakker  NCJacz  KDoornbos  Lde Ridder  VA Selective decontamination of the digestive tract with norfloxacin in the prevention of ICU-acquired infections: a prospective randomized study. Intensive Care Med. 1989;15424- 431
Link to Article
Rodriguez-Roldan  JMAltuna-Cuesta  ALopez  A  et al.  Prevention of nosocomial lung infection in ventilated patients: use of an antimicrobial pharyngeal nonabsorbable paste. Crit Care Med. 1990;181239- 1242
Link to Article
Winter  RHumphreys  HPick  AMacGowan  APWillatts  SMSpeller  DC A controlled trial of selective decontamination of the digestive tract in intensive care and its effect on nosocomial infection. J Antimicrob Chemother. 1992;3073- 87
Link to Article
Aerdts  SJAvan Dalen  RClasener  HALFesten  Jvan Lier  HJJVollaard  EJ Antibiotic prophylaxis of respiratory tract infection in mechanically ventilated patients. Chest. 1991;100783- 791
Link to Article
Brun-Buisson  CLegrand  PRauss  A  et al.  Intestinal decontamination for control of nosocomial multiresistant Gram-negative bacilli. Ann Intern Med. 1989;110873- 881
Link to Article
Jacobs  SFoweraker  JERoberts  SE Effectiveness of selective decontamination of the digestive tract in an ICU with a policy encouraging a low gastric pH. Clin Intensive Care. 1992;352- 58
Wiener  JItokazu  GNathan  CKabins  SAWeinstein  RA A randomized, double-blind, placebo-controlled trial of selective decontamination in a medical-surgical intensive care unit. Clin Infect Dis. 1995;20861- 867
Link to Article
Cuervas-Mons  VMatinez  AJDekker  AStarzl  TEVan Thiel  DH Adult liver transplantation: an analysis of the early causes of death in 40 consecutive cases. Hepatology. 1986;6495- 501
Link to Article
Cuervas-Mons  VBarrios  CGarrido  A  et al.  Bacterial infections in liver transplant patients under selective decontamination with norfloxacin. Transplant Proc. 1989;21355
Raakow  RSteffen  RLefebre  BBechstein  WOBlumhardt  GNeuhaus  P Selective bowel decontamination effectively prevents gram-negative bacterial infections after liver transplantation. Transplant Proc. 1990;221556- 1557
Rosman  CKlompmaker  IJBonsel  GJBleichrodt  RPArends  JPSloof  MJH The efficacy of selective bowel decontamination as infection prevention after liver transplantation. Transplant Proc. 1990;221554- 1555
Weisner  RHHermans  PERakela  J  et al.  Selective bowel decontamination to decrease Gram-negative aerobic bacterial and candidal colonization and prevent infection after orthotopic liver transplantation. Transplantation. 1988;45570- 574
Link to Article
Bion  JFBadger  ICrosby  HAHutchings  P  et al.  Selective decontamination of the digestive tract reduces Gram-negative pulmonary colonization but not systemic endotoxemia in patients undergoing elective liver transplantation. Crit Care Med. 1994;2240- 49
Smith  SDJackson  RJHannakan  CJWadowsky  RMTzakis  AGRowe  MI Selective decontamination in pediatric liver transplants. Transplantation. 1993;551306- 1309
Link to Article
Arnow  PMCarandang  GCZabner  RIrwin  ME Randomized controlled trial of selective bowel decontamination for prevention of infections following liver transplantation. Clin Infect Dis. 1996;22997- 1003
Link to Article
Zobel  GKuttnig  MGrubbauer  HMSemmelrock  HJThiel  W Reduction of colonization and infection rate during pediatric intensive care by selective decontamination of the digestive tract. Crit Care Med. 1991;191242- 1246
Link to Article
Flaherty  JNathan  CKabins  SAWeinstein  RA Pilot trial of selective decontamination for prevention of bacterial infection in an intensive care unit. J Infect Dis. 1990;1621393- 1397
Link to Article
Martinez-Pellus  AEMerino  PBru  M  et al.  Can selective digestive decontamination avoid the endotoxemia and cytokine activation promoted by cardiopulmonary bypass. Crit Care Med. 1993;211684- 1691
Link to Article
Fox  MAPeterson  SFabri  BMVan Saene  HK Selective decontamination of the digestive tract in cardiac surgical patients. Crit Care Med. 1991;191486- 1490
Link to Article
Tetteroo  GWWagenvoort  JHCastelein  ATilanus  HWInce  CBruining  HA Selective decontamination to reduce gram-negative colonisation and infections after oesophageal resection. Lancet. 1990;335704- 707
Link to Article
Schardey  HMJoosten  UFinke  U  et al.  The prevention of anastomotic leakage after total gastrectomy with local decontamination: a prospective, randomized, double-blind, placebo-controlled multicenter trial. Ann Surg. 1997;225172- 180
Link to Article
Kreuzer  EKaab  SPilz  GWerdan  K Early prediction of septic complications after cardiac surgery by APACHE II score. Eur J Cardiothorac Surg. 1992;6524- 528
Link to Article
Asnes  JAbdelnoor  MBerge  VFjeld  NB Risk factors of septicemia and perioperative myocardial infarction in a cohort of patients supported with intra-aortic balloon pump (IABP) in the course of open heart surgery. Eur J Cardiothorac Surg. 1993;7153- 157
Link to Article
Kollef  MHWragge  TPasque  C Determinants of mortality and multiorgan dysfunction in cardiac surgery patients requiring prolonged mechanical ventilation. Chest. 1995;1071395- 1401
Link to Article
Shirani  KZPruitt  BAMason  AD The influence of inhalation injury and pneumonia on burn mortality. Ann Surg. 1987;20582- 87
Link to Article
Sittig  KDeitch  EA Effect of bacteremia on mortality after thermal injury. Arch Surg. 1988;1231367- 1370
Link to Article
Mackie  DPvan Hertum  WASchumburg  TKuijper  ECKnape  P Prevention of infection in burns: preliminary experience with selective decontamination of the digestive tract in patients with extensive injuries. J Trauma. 1992;32570- 575
Link to Article
Luiten  EJTHop  WCJLange  JFBruining  HA Controlled clinical trial of selective decontamination for the treatment of severe acute pancreatitis. Ann Surg. 1995;22257- 65
Link to Article
Mclelland  PMurray  AYaqoob  MVan Saene  HKFBone  JMMostafa  SM Prevention of bacterial infection and sepsis in acute severe pancreatitis. Ann R Coll Surg Engl. 1992;74329- 334
Collins  RSchrimgeour  AYusuf  SPeto  R Reduction in fatal pulmonary embolism and venous thrombosis by perioperative administration of subcutaneous heparin. N Engl J Med. 1988;3181162- 1173
Link to Article
Kaiser  AB Antimicrobial prophylaxis in surgery. N Engl J Med. 1986;3151129- 1138
Link to Article
Freedman  B Equipoise and the ethics of clinical research. N Engl J Med. 1987;317141- 145
Link to Article
Lingnau  WBerger  JJavorsky  FLejeune  PMutz  NBenzer  H Selective intestinal decontamination in multiple trauma patients: prospective, controlled trial. J Trauma. 1997;42687- 694
Link to Article

Figures

Place holder to copy figure label and caption
Figure 1

The effect of selective decontamination of the digestive tract on mortality in critically ill surgical patients. Odds ratios and the 95% confidence intervals (CI) in 11 studies with more than 75% postoperative or trauma patients are demonstrated.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2

The effect of selective decontamination of the digestive tract on mortality in critically ill medical patients. Odds ratios and the 95% confidence intervals (CIs) in 10 studies with 25% or fewer postoperative or trauma patients are demonstrated.

Graphic Jump Location

Tables

Table Graphic Jump LocationTable 1. Criteria Used to Assess Methodologic Quality*
Table Graphic Jump LocationTable 2. Efficacy on Mortality and Nosocomial Infection Rates of Selective Decontamination of the Digestive Tract, Surgical vs Medical Intensive Care Units
Table Graphic Jump LocationTable 3. Randomized Trials of Selective Decontamination of the Digestive Tract (SDD) in Liver Transplantation and Cardiac Surgery*

References

Sleifer  DTMulder  NHde Vries-Hospers  HG  et al.  Infection prevention in granulocytopenic patients by selective decontamination of the digestive tract. Eur J Cancer. 1980;16859- 868
Link to Article
Stoutenbeek  CPVan Saene  HKMiranda  DRZandstra  DF A new technique of infection prevention in the intensive care unit by selective decontamination of the digestive tract. Acta Anaesthesiol Belg. 1983;34209- 221
Stoutenbeek  CPVan Saene  HKFMiranda  DRZandstra  DF The effect of selective decontamination of the digestive tract on colonisation and infection rate in multiple trauma patients. Intensive Care Med. 1984;10185- 192
Link to Article
Selective Decontamination of the Digestive Tract Trialists' Collaborative Group, Meta-analysis of randomised controlled trials of selective decontamination of the digestive tract. BMJ. 1993;307525- 532
Link to Article
Heyland  DKCook  DJJaeschke  RGriffith  LLee  HNGuyatt  GH Selective decontamination of the digestive tract: an overview. Chest. 1994;1051221- 1229
Link to Article
Kollef  MH The role of selective digestive tract decontamination on mortality and respiratory tract infections: a meta-analysis. Chest. 1994;1051101- 1108
Link to Article
D'Amico  RPifferi  SLeonetti  CTorri  VTinazzi  ALiberati  Afor the study investigators, Effectiveness of antibiotic prophylaxis in critically ill adult patients: systematic review of randomized controlled trials. BMJ. 1998;3161275- 1285
Link to Article
Gibson  GBarrett  E The role of salivary function on oropharyngeal colonization. Spec Care Dentist. 1992;12153- 156
Link to Article
Driks  MRCraven  DECelli  BR  et al.  Nosocomial pneumonia in intubated patients given sucralfate as compared with antacids or histamine type 2 blockers: the role of gastric colonization. N Engl J Med. 1987;3171376- 1382
Link to Article
Floch  MHGershengoren  WElliott  SSpiro  HM Bile acid inhibition of the intestinal microflora: a function for simple bile acids. Gastroenterology. 1971;61228- 233
Mcloughlin  GAHede  JETemple  JGBradley  JChapman  DMMcFarland  J The role of IgA in the prevention of bacterial colonization of the jejunum in the vagotomized subject. Br J Surg. 1978;65435- 437
Link to Article
Cade  JFMcOwat  ESiganporia  RKeighley  CPresneill  JSinickas  V Uncertain relevance of gastric colonization in the seriously ill. Intensive Care Med. 1992;18210- 217
Link to Article
Marshall  JCChristou  NVHorn  RMeakins  JL The microbiology of multiple organ failure: the proximal gastrointestinal tract as an occult reservoir of pathogens. Arch Surg. 1988;123309- 315
Link to Article
Johanson  WGPierce  AKSanford  JPThomas  GD Nosocomial respiratory infections with gram-negative bacilli. Ann Intern Med. 1972;77701- 706
Link to Article
du Moulin  GCHedley-White  JPaterson  DGLisbon  A Aspiration of gastric bacteria in antacid-treated patients: a frequent cause of postoperative colonization of the airway. Lancet. 1982;1242- 244
Link to Article
Simms  HHDeMaria  EMcDonald  LPeterson  DRobinson  ABurchard  KW Role of gastric colonization in the development of pneumonia in critically ill trauma patients: results of a prospective randomized trial. J Trauma. 1991;31531- 537
Link to Article
Marshall  JCChristou  NVMeakins  JL The gastrointestinal tract: the "undrained abscess" of multiple organ failure. Ann Surg. 1993;218111- 119
Link to Article
Cook  DJLaine  LAGuyatt  GHRaffin  TA Nosocomial pneumonia and the role of gastric pH: a meta-analysis. Chest. 1991;1007- 13
Link to Article
Cook  DJGuyatt  GHMarshall  JC  et al. for the Canadian Critical Care Trials Group, A randomized trial of sucralfate versus ranitidine for stress ulcer prophylaxis in critically ill patients. N Engl J Med. 1998;338791- 797
Link to Article
Kingston  GWPhang  PTLeathley  MJ Increased incidence of nosocomial pneumonia in mechanically ventilated patients with subclinical aspiration. Am J Surg. 1991;161589- 592
Link to Article
Torres  ASerra-Batlles  JRos  E  et al.  Pulmonary aspiration of gastric contents in patient receiving mechanical ventilation: the effect of body position. Ann Intern Med. 1992;116540- 543
Link to Article
Deitch  EAWinterton  JBerg  R The gut as a portal of entry for bacteremia. Ann Surg. 1987;205681- 692
Link to Article
Jones  WGMinei  JPBarber  AERayburn  JLFahey  TJShires  GT Bacterial translocation and intestinal atrophy after thermal injury and burn wound sepsis. Ann Surg. 1990;211399- 405
Link to Article
Moore  FAMoore  EEPoggetti  R  et al.  Gut bacterial translocation via the portal vein: a clinical perspective with major torso trauma. J Trauma. 1991;31629- 638
Link to Article
Van Saene  HKStoutenbeek  CPHart  CA Selective decontamination of the digestive tract (SDD) in intensive care patients: a critical evaluation of the clinical, bacteriological and epidemiological benefits. J Hosp Infect. 1991;18261- 277
Link to Article
van der Waaij  DAberson  JThijm  HAWelling  GW The screening of four aminoglycosides in the selective decontamination of the digestive tract in mice. Infection. 1982;1035- 40
Link to Article
Cunnion  KMWeber  DJBroadhead  WEHanson  LCPieper  CFRutala  WA Risk factors for nosocomial pneumonia: comparing adult critical-care populations. Am J Respir Crit Care Med. 1996;153158- 162
Link to Article
Cook  DJGuyatt  GHLaupacis  ASackett  DL Rules of evidence and clinical recommendations on the use of antithrombotic agents. Chest. 1992;102305S- 311S
Heyland  DKCook  DJKing  DKernerman  PBrun-Buisson  C Maximizing oxygen delivery in critically ill patients: a methodologic appraisal of the evidence. Crit Care Med. 1996;24517- 524
Link to Article
Unertl  KRuckdeschel  GSelbmann  HK  et al.  Prevention of colonization and respiratory infections in long-term ventilated patients by local antimicrobial prophylaxis. Intensive Care Med. 1987;13106- 113
Link to Article
Korinek  AMLaisne  MJNicolas  MHRaskine  LDeroin  VSanson-Lepors  MJ Selective decontamination of the digestive tract in neurosurgical intensive care unit patients: a double-blind, randomized, placebo-controlled study. Crit Care Med. 1993;211466- 1473
Link to Article
Kerver  AJRommes  JHMevissen-Verhage  EA  et al.  Prevention of colonization and infection in critically ill patients: a prospective randomized study. Crit Care Med. 1988;161087- 1093
Link to Article
Godard  JGuillaume  MEBachmann  B  et al.  Intestinal decontamination in a polyvalent ICU: a double-blind study. Intensive Care Med. 1990;16307- 311
Link to Article
Rocha  LAMartin  MJPita  S  et al.  Prevention of nosocomial infection in critically ill patients by selective decontamination of the digestive tract: a randomized, double blind, placebo-controlled study. Intensive Care Med. 1992;18398- 404
Link to Article
Blair  PRowlands  BJLowry  KWebb  HArmstrong  PSmilie  J Selective decontamination of the digestive tract: a stratified, randomized, prospective study in a mixed intensive care unit. Surgery. 1991;110303- 310
Pugin  JAuckenthaler  RLew  DPSuter  PM Oropharyngeal decontamination decreases incidence of ventilator-associated pneumonia: a randomized, placebo-controlled, double-blind clinical trial. JAMA. 1991;2652704- 2710
Link to Article
Cerra  FBMaddaus  MADunn  DL  et al.  Selective gut decontamination reduces nosocomial infections and length of stay but not mortality or organ failure in surgical intensive care unit patients. Arch Surg. 1992;127163- 169
Link to Article
Cockerill  FRMuller  SRAnhalt  JP  et al.  Prevention of infection in critically ill patients by selective decontamination of the digestive tract. Ann Intern Med. 1992;117545- 553
Link to Article
Quinio  BAlbanese  JBues-Charbit  MViviand  XMartin  C Selective decontamination of the digestive tract in multiple trauma patients. Chest. 1996;109765- 772
Link to Article
Stoutenbeek  CPVan Saene  HKFZandstra  DF Prevention of multiple organ system failure by selective decontamination of the digestive tract in multiple trauma patients. Faist  EBaue  AESchildberg  FWeds.The Immune Consequences of Trauma, Shock and Sepsis—Mechanisms and Therapeutic Approaches. Berlin, Germany Pabst Science Publishers1996;1055- 1066
Ferrer  MTorres  AGonzalez  J  et al.  Utility of selective digestive decontamination in mechanically ventilated patients. Ann Intern Med. 1994;120389- 395
Link to Article
Hammond  JMPotgieter  PDSaunders  GLForder  AA Double-blind study of selective decontamination of the digestive tract in intensive care. Lancet. 1992;3405- 9
Link to Article
Gastinne  HWolff  MDelatour  FFaurisson  FChevret  S A controlled trial in intensive care units of selective decontamination of the digestive tract with nonabsorbable antibiotics. N Engl J Med. 1992;326594- 599
Link to Article
Ulrich  CHarinck-de Weerd  JEBakker  NCJacz  KDoornbos  Lde Ridder  VA Selective decontamination of the digestive tract with norfloxacin in the prevention of ICU-acquired infections: a prospective randomized study. Intensive Care Med. 1989;15424- 431
Link to Article
Rodriguez-Roldan  JMAltuna-Cuesta  ALopez  A  et al.  Prevention of nosocomial lung infection in ventilated patients: use of an antimicrobial pharyngeal nonabsorbable paste. Crit Care Med. 1990;181239- 1242
Link to Article
Winter  RHumphreys  HPick  AMacGowan  APWillatts  SMSpeller  DC A controlled trial of selective decontamination of the digestive tract in intensive care and its effect on nosocomial infection. J Antimicrob Chemother. 1992;3073- 87
Link to Article
Aerdts  SJAvan Dalen  RClasener  HALFesten  Jvan Lier  HJJVollaard  EJ Antibiotic prophylaxis of respiratory tract infection in mechanically ventilated patients. Chest. 1991;100783- 791
Link to Article
Brun-Buisson  CLegrand  PRauss  A  et al.  Intestinal decontamination for control of nosocomial multiresistant Gram-negative bacilli. Ann Intern Med. 1989;110873- 881
Link to Article
Jacobs  SFoweraker  JERoberts  SE Effectiveness of selective decontamination of the digestive tract in an ICU with a policy encouraging a low gastric pH. Clin Intensive Care. 1992;352- 58
Wiener  JItokazu  GNathan  CKabins  SAWeinstein  RA A randomized, double-blind, placebo-controlled trial of selective decontamination in a medical-surgical intensive care unit. Clin Infect Dis. 1995;20861- 867
Link to Article
Cuervas-Mons  VMatinez  AJDekker  AStarzl  TEVan Thiel  DH Adult liver transplantation: an analysis of the early causes of death in 40 consecutive cases. Hepatology. 1986;6495- 501
Link to Article
Cuervas-Mons  VBarrios  CGarrido  A  et al.  Bacterial infections in liver transplant patients under selective decontamination with norfloxacin. Transplant Proc. 1989;21355
Raakow  RSteffen  RLefebre  BBechstein  WOBlumhardt  GNeuhaus  P Selective bowel decontamination effectively prevents gram-negative bacterial infections after liver transplantation. Transplant Proc. 1990;221556- 1557
Rosman  CKlompmaker  IJBonsel  GJBleichrodt  RPArends  JPSloof  MJH The efficacy of selective bowel decontamination as infection prevention after liver transplantation. Transplant Proc. 1990;221554- 1555
Weisner  RHHermans  PERakela  J  et al.  Selective bowel decontamination to decrease Gram-negative aerobic bacterial and candidal colonization and prevent infection after orthotopic liver transplantation. Transplantation. 1988;45570- 574
Link to Article
Bion  JFBadger  ICrosby  HAHutchings  P  et al.  Selective decontamination of the digestive tract reduces Gram-negative pulmonary colonization but not systemic endotoxemia in patients undergoing elective liver transplantation. Crit Care Med. 1994;2240- 49
Smith  SDJackson  RJHannakan  CJWadowsky  RMTzakis  AGRowe  MI Selective decontamination in pediatric liver transplants. Transplantation. 1993;551306- 1309
Link to Article
Arnow  PMCarandang  GCZabner  RIrwin  ME Randomized controlled trial of selective bowel decontamination for prevention of infections following liver transplantation. Clin Infect Dis. 1996;22997- 1003
Link to Article
Zobel  GKuttnig  MGrubbauer  HMSemmelrock  HJThiel  W Reduction of colonization and infection rate during pediatric intensive care by selective decontamination of the digestive tract. Crit Care Med. 1991;191242- 1246
Link to Article
Flaherty  JNathan  CKabins  SAWeinstein  RA Pilot trial of selective decontamination for prevention of bacterial infection in an intensive care unit. J Infect Dis. 1990;1621393- 1397
Link to Article
Martinez-Pellus  AEMerino  PBru  M  et al.  Can selective digestive decontamination avoid the endotoxemia and cytokine activation promoted by cardiopulmonary bypass. Crit Care Med. 1993;211684- 1691
Link to Article
Fox  MAPeterson  SFabri  BMVan Saene  HK Selective decontamination of the digestive tract in cardiac surgical patients. Crit Care Med. 1991;191486- 1490
Link to Article
Tetteroo  GWWagenvoort  JHCastelein  ATilanus  HWInce  CBruining  HA Selective decontamination to reduce gram-negative colonisation and infections after oesophageal resection. Lancet. 1990;335704- 707
Link to Article
Schardey  HMJoosten  UFinke  U  et al.  The prevention of anastomotic leakage after total gastrectomy with local decontamination: a prospective, randomized, double-blind, placebo-controlled multicenter trial. Ann Surg. 1997;225172- 180
Link to Article
Kreuzer  EKaab  SPilz  GWerdan  K Early prediction of septic complications after cardiac surgery by APACHE II score. Eur J Cardiothorac Surg. 1992;6524- 528
Link to Article
Asnes  JAbdelnoor  MBerge  VFjeld  NB Risk factors of septicemia and perioperative myocardial infarction in a cohort of patients supported with intra-aortic balloon pump (IABP) in the course of open heart surgery. Eur J Cardiothorac Surg. 1993;7153- 157
Link to Article
Kollef  MHWragge  TPasque  C Determinants of mortality and multiorgan dysfunction in cardiac surgery patients requiring prolonged mechanical ventilation. Chest. 1995;1071395- 1401
Link to Article
Shirani  KZPruitt  BAMason  AD The influence of inhalation injury and pneumonia on burn mortality. Ann Surg. 1987;20582- 87
Link to Article
Sittig  KDeitch  EA Effect of bacteremia on mortality after thermal injury. Arch Surg. 1988;1231367- 1370
Link to Article
Mackie  DPvan Hertum  WASchumburg  TKuijper  ECKnape  P Prevention of infection in burns: preliminary experience with selective decontamination of the digestive tract in patients with extensive injuries. J Trauma. 1992;32570- 575
Link to Article
Luiten  EJTHop  WCJLange  JFBruining  HA Controlled clinical trial of selective decontamination for the treatment of severe acute pancreatitis. Ann Surg. 1995;22257- 65
Link to Article
Mclelland  PMurray  AYaqoob  MVan Saene  HKFBone  JMMostafa  SM Prevention of bacterial infection and sepsis in acute severe pancreatitis. Ann R Coll Surg Engl. 1992;74329- 334
Collins  RSchrimgeour  AYusuf  SPeto  R Reduction in fatal pulmonary embolism and venous thrombosis by perioperative administration of subcutaneous heparin. N Engl J Med. 1988;3181162- 1173
Link to Article
Kaiser  AB Antimicrobial prophylaxis in surgery. N Engl J Med. 1986;3151129- 1138
Link to Article
Freedman  B Equipoise and the ethics of clinical research. N Engl J Med. 1987;317141- 145
Link to Article
Lingnau  WBerger  JJavorsky  FLejeune  PMutz  NBenzer  H Selective intestinal decontamination in multiple trauma patients: prospective, controlled trial. J Trauma. 1997;42687- 694
Link to Article

Correspondence

CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 163

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
PubMed Articles