0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Research Letters |

Fluorescent Cholangiography Using Indocyanine Green for Laparoscopic Cholecystectomy: An Initial Experience FREE

Takeaki Ishizawa, MD; Yasutsugu Bandai, MD, PhD; Norihiro Kokudo, MD, PhD
Arch Surg. 2009;144(4):381-382. doi:10.1001/archsurg.2009.9.
Text Size: A A A
Published online

Intraoperative cholangiography (IOC) is recommended to prevent bile duct injury during laparoscopic cholecystectomy.1 However, conventional radiographic IOC in a laparoscopic setting is time-consuming, and insertion of a transcystic tube for contrast-material injection may in itself cause bile duct injury.2 Furthermore, conventional IOC exposes the patient and medical staff to radiation and usually requires a large fluoroscopy machine and additional human resources.3 Recently, we developed a novel fluorescent IOC technique using the intravenous injection of indocyanine green (ICG) to delineate the biliary tract during an open cholecystectomy.4 Herein, we report our initial experience applying fluorescent IOC to laparoscopic cholecystectomy using a newly devised laparoscopic fluorescent imaging system.

Our fluorescent IOC technique is based on the principle that ICG is excreted into bile and that protein-bound ICG emits light with a peak wavelength of approximately 830 nm when illuminated with near-infrared light. The prototypic fluorescent imaging system (Hamamatsu Photonics Co, Hamamatsu, Japan) is composed of a xenon light source, a small control unit, and a laparoscope (10 mm in diameter) with a charge-coupled device camera, which can filter out light with wavelengths below 810 nm. This imaging system has originally been used for sentinel node biopsies during gastrointestinal surgery.5

We describe the case of a 46-year-old man who underwent laparoscopic cholecystectomy for cholecystolithiasis. One milliliter (2.5 mg/mL) of ICG (Diagnogreen; Daiichi Sankyo Co, Tokyo, Japan) was intravenously injected 2 hours before surgery. The abdominal cavity was insufflated, and a laparoscope was introduced through a subumbilical trocar. After the hepatoduodenal ligament was identified, the color images were changed to fluorescent images using a foot switch. The fluorescing cystic duct and the common hepatic duct were clearly visualized before the dissection of the trigonum cystohepaticum. The cystic duct was then isolated and divided, occasionally using fluorescent imaging to confirm the biliary tract anatomy (Figure) (a video is available here). The fluorescence of the biliary tract lasted throughout the laparoscopic procedure (109 minutes).

Place holder to copy figure label and caption
Figure.

Fluorescent cholangiographic images (left) and corresponding color images (right) obtained during laparoscopic cholecystectomy. A, Fluorescent cholangiography enabled the cystic duct (CyD) and the adjacent common hepatic duct (CHD) to be identified before the dissection of the trigonum cystohepaticum. The CyD was isolated (B) and clipped (C) using the fluorescent images to confirm the relationship of the CyD to the CHD.

Graphic Jump Location

Fluorescent IOC with intravenous ICG injection has potential advantages over radiographic IOC. First, the technique we described can save time and avoid bile duct injury associated with the insertion of a transcystic tube.2 Second, it is convenient. Using only a preoperative intravenous ICG injection, surgeons can obtain fluorescent images of the biliary tract at any time, without radiation technicians. Third, fluorescent imaging enables the distinct identification of the biliary tract in relation to surrounding structures and organs, though its ability to detect common bile duct stones remains unclear. Lastly, fluorescent IOC is safe. It does not require irradiation, and the risk related to the administration of ICG is quite small (approximately 0.003% at doses in excess of 0.5 mg/kg).6 With further refinements in image resolution, fluorescent IOC may become the optimal tool to confirm biliary tract anatomy for safer laparoscopic cholecystectomy.

ARTICLE INFORMATION

Correspondence: Dr Kokudo, Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan (kokudo-2su@h.u-tokyo.ac.jp).

Author Contributions:Study concept and design: Ishizawa and Kokudo. Acquisition of data: Ishizawa and Bandai. Analysis and interpretation of data: Ishizawa. Drafting of the manuscript: Ishizawa. Critical revision of the manuscript for important intellectual content: Bandai and Kokudo. Obtained funding: Ishizawa and Kokudo. Administrative, technical, and material support: Bandai. Study supervision: Bandai and Kokudo.

Financial Disclosure: None reported.

Funding/Support: This work was supported by grants 18790955 and 17591377 from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Dr Kokudo); grant 18230201 from the Scientific Research from the Ministry of Health, Labour, and Welfare of Japan (Dr Kokudo); a grant from the Japanese Society for Advancement of Surgical Techniques (Dr Ishizawa); and a grant from the Japanese Foundation for Research and Promotion of Endoscopy (Dr Ishizawa).

Flum  DRDellinger  EPCheadle  AChan  LKoepsell  T Intraoperative cholangiography and risk of common bile duct injury during cholecystectomy. JAMA 2003;289 (13) 1639- 1644
PubMed Link to Article
White  TTHart  MJ Cholangiography and small duct injury. Am J Surg 1985;149 (5) 640- 643
PubMed Link to Article
Flum  DRFlowers  CVeenstra  DL A cost-effectiveness analysis of intraoperative cholangiography in the prevention of bile duct injury during laparoscopic cholecystectomy. J Am Coll Surg 2003;196 (3) 385- 393
PubMed Link to Article
Ishizawa  TTamura  SMasuda  K  et al.  Intraoperative fluorescent cholangiography using indocyanine green: a biliary road map for safe surgery [published online October 31, 2008]. J Am Coll Surg 2009;208 (1) e1- e4
PubMed Link to Article
Kusano  MTajima  YYamazaki  KKato  MWatanabe  MMiwa  M Sentinel node mapping guided by indocyanine green fluorescence imaging: a new method for sentinel node navigation surgery in gastrointestinal cancer. Dig Surg 2008;25 (2) 103- 108
PubMed Link to Article
Speich  RSaesseli  BHoffmann  UNeftel  KAReichen  J Anaphylactoid reactions after indocyanine-green administration. Ann Intern Med 1988;109 (4) 345- 346
PubMed Link to Article

Figures

Place holder to copy figure label and caption
Figure.

Fluorescent cholangiographic images (left) and corresponding color images (right) obtained during laparoscopic cholecystectomy. A, Fluorescent cholangiography enabled the cystic duct (CyD) and the adjacent common hepatic duct (CHD) to be identified before the dissection of the trigonum cystohepaticum. The CyD was isolated (B) and clipped (C) using the fluorescent images to confirm the relationship of the CyD to the CHD.

Graphic Jump Location

Tables

References

Flum  DRDellinger  EPCheadle  AChan  LKoepsell  T Intraoperative cholangiography and risk of common bile duct injury during cholecystectomy. JAMA 2003;289 (13) 1639- 1644
PubMed Link to Article
White  TTHart  MJ Cholangiography and small duct injury. Am J Surg 1985;149 (5) 640- 643
PubMed Link to Article
Flum  DRFlowers  CVeenstra  DL A cost-effectiveness analysis of intraoperative cholangiography in the prevention of bile duct injury during laparoscopic cholecystectomy. J Am Coll Surg 2003;196 (3) 385- 393
PubMed Link to Article
Ishizawa  TTamura  SMasuda  K  et al.  Intraoperative fluorescent cholangiography using indocyanine green: a biliary road map for safe surgery [published online October 31, 2008]. J Am Coll Surg 2009;208 (1) e1- e4
PubMed Link to Article
Kusano  MTajima  YYamazaki  KKato  MWatanabe  MMiwa  M Sentinel node mapping guided by indocyanine green fluorescence imaging: a new method for sentinel node navigation surgery in gastrointestinal cancer. Dig Surg 2008;25 (2) 103- 108
PubMed Link to Article
Speich  RSaesseli  BHoffmann  UNeftel  KAReichen  J Anaphylactoid reactions after indocyanine-green administration. Ann Intern Med 1988;109 (4) 345- 346
PubMed Link to Article

Correspondence

CME
Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

See Also...
Articles Related By Topic
Related Collections
PubMed Articles