Laparoscopic Spleen-Preserving Distal Pancreatectomy

Spleenic Vessel Preservation Compared With the Warshaw Technique

Jean-Philippe Adam; Alexandre Jacquin, MD; Christophe Laurent, MD; Denis Collet, MD; Bernard Masson, MD; Laureano Fernández-Cruz, MD; Antonio Sa-Cunha, MD

Objective: To compare preservation with the division of the splenic vessels in the surgical management of laparoscopic spleen-preserving distal pancreatectomy.

Design: Bicentric retrospective study.

Setting: Prospectively maintained databases.

Patients: Between January 1997 and January 2011, 140 patients who underwent laparoscopic spleen-preserving distal pancreatectomy for benign or low-grade malignant tumors in the body/tail of the pancreas were included. Patients treated with the attempted splenic vessel preservation were compared with patients treated with the attempted division of the splenic vessels (Warshaw technique).

Main Outcome Measures: Operative outcomes and postoperative morbidity were evaluated.

Results: The outcomes of 55 patients in the splenic vessel preservation group were compared with those of 85 patients in the Warshaw technique group. The clinical characteristics were similar in both groups, except for tumor size, which was significantly greater in the Warshaw technique group (33.6 vs 42.5 mm; P < .001). The mean operative time, mean blood loss, and rate of conversion to the open procedure did not differ between the 2 groups. The rate of successful spleen preservation was significantly improved following the splenic vessel preservation technique (96.4% vs 84.7%; P = .03). Complications related to the spleen only occurred in the Warshaw technique group (0% vs 10.5%; P = .03), requiring a splenectomy in 4 patients (4.7%). The mean length of stay was shorter in the splenic vessel preservation group (8.2 vs 10.5 days; P = .01).

Conclusions: The short-term benefits associated with the preservation of the splenic vessels should lead to an increased preference for this technique in selected patients undergoing laparoscopic spleen-preserving distal pancreatectomy for benign or low-grade malignant tumors in the body/tail of the pancreas.


Videos available online at www.jamasurg.com

Neither one of these techniques is favored over the other, and the reasons for selection remain unclear. Ligation of the splenic vessels is known to have potential risks including postoperative infarction of the spleen and the need for a reoperation.14,35 To our knowledge, only a
few studies with a small number of patients have compared both laparoscopic techniques.

The objective of this study was to compare splenic vessel preservation (SVP) with the Warshaw technique (WT) in the surgical management of patients undergoing laparoscopic spleen-preserving distal pancreatectomy (LSPDP).

**METHODS**

**STUDY DESIGN**

A retrospective analysis of prospectively maintained databases from 2 academic medical centers was performed. Data from patients undergoing LSPDP for benign or low-grade malignant tumors in the body/tail of the pancreas between January 1997 and January 2011 were included. Patients with suspected malignant tumors or planned preoperative splenopancreatectomies were excluded. Patients were divided into 2 groups. In the SVP group, SVP was performed on an intention-to-treat basis. In the WT group, division of the splenic vessels was performed on an intention-to-treat basis.

Both medical centers (University of Bordeaux Segalen and University of Barcelona) provided specific preoperative, operative, and postoperative data parameters using a common menu-driven database file. Informed consent was obtained from each patient, and the study was approved by the local ethics committee.

**OPERATIVE TECHNIQUE**

Patient selection, choice of procedure, technical operative course, and use of surgical equipment were independently determined by each surgeon based on the patients’ preoperative findings and surgical experience. Both approaches were performed in the 2 centers throughout the study. The protocols for all of the surgical procedures were notably similar between the institutions, as described in previous publications. In general, the patient is positioned supine with the legs apart and arms tucked beside the body. The surgeon stands between the patient’s legs, with an assistant on the patient’s left side and a scrub nurse on the right side. A video monitor is placed to the left of the patient’s head. The procedure requires 4 trocars. A 10-mm port is placed at the umbilicus for the 30° telescope, a second 10-mm port is located along the left costal margin with a 5-mm right subcostal port and a 5-mm subxiphoid epigastric port. The table is placed in a reverse Trendelenburg position to facilitate displacement of the transverse colon and small bowel from the operative field. The lesser sac is opened by the lysis of the avascular plane between the transverse colon and the greater omentum to expose the isthmus, body, and tail of the pancreas. The posterior aspect of the stomach is grasped and elevated with a fenestrated grasper introduced through the subxiphoid port to enable exploration of the entire left side of the pancreas. Localized tumor and delineation of its extent is performed using intraoperative ultrasonography. The inferior border of the pancreas is dissected at the level of the isthmus. After identification of the mesentericportal venous axis, the avascular plane between the posterior aspect of the isthmus and the anterior wall of the portal vein is dissected. After the upper edge of the pancreas has been freed, the anterior wall of the portal vein lies within the triangle formed by the common hepatic artery above, the gastroduodenal artery to the right, and the upper edge of the pancreas below. The retro-isthmic tunnel is completely dissected, and the pancreatic isthmus is encircled and retracted with tape.

The isolated isthmus is divided using a cutting linear stapler or ultrasonic scissors (harmonic scalpel) to identify and ligate the Wirsung duct separately.

The splenic artery and vein are isolated at their origins and encircled with tape.

**Left Pancreatectomy With Preservation of the Splenic Vessels**

The splenic vein and splenic artery are progressively dissected and freed from the tail of the pancreas from right to left. Small venous branches supplying the pancreas must be clipped and divided with ultrasonic scissors. Arterial branches are also clipped and divided (Video 1, http://www.jamasurg.com).

**Left Pancreatectomy With Sacrifice of the Splenic Vessels**

After the splenic artery has been clipped and divided, the inferior border of the pancreas is freed from the transverse mesocolon all the way to the tip of the pancreatic tail. The tail of the pancreas is dissected and freed from the splenic hilum. The splenic artery and vein appear above the upper edge of the pancreas at the junction of the body and tail. The short gastric vessels must be identified such that the splenic vessels can be divided immediately before the first short gastric branches (Video 2). At this stage, the vascularization of the spleen depends entirely on the short gastric vessels. The tail and body of the pancreas can now be easily freed from their posterior attachments. The pancreas is reflected to the right on its splenic vein pedicle, which is subsequently divided between ligatures or clips. Dividing the splenic vein as the final step avoids venous hypertension in the resected pancreas, although it is possible to divide the splenic vein at an earlier stage after division of the isthmus and the splenic artery.

The specimen is placed in a sack and removed from the abdomen, which may require enlargement of the left subcostal trocar site with a transverse incision. A suction drain remains in the pancreatic bed.

**OUTCOME MEASURES**

Clinicopathologic characteristics and operative and postoperative outcomes were examined. Tumor size and pathologic diagnoses were obtained from the final histologic report. The type of procedure was defined on an intention-to-treat basis. Blood loss and operative times were obtained from the patient record. The need for an open conversion and the occurrence of intraoperative complications were also reported.

Morbidity was defined as a complication occurring within 30 days after surgery or during the hospital stay. Complications were graded using Dindo classification. A pancreatic fistula (PF) was defined as an amylase concentration—as measured in the fluid collected at days 3 and 5 after a drain was placed intraoperatively—that was more than 3 times greater than the serum concentration. Pancreatic fistulas were classified according to the clinical impact on the patient’s course (grade A, B, or C) using the definition from the International Study Group of Pancreatic Fistula. Postoperative management differed between the 2 academic medical centers. One institution performed color Doppler ultrasonography on all patients during the postoperative period. The second institution conducted diagnostic imaging (color Doppler ultrasonography and/or computed tomography) when patients were suspected of developing medical or surgical complications.
STATISTICAL ANALYSES

Continuous data were expressed as means and standard deviations. Categorical variables were analyzed with the chi-squared test or Fisher exact test, and continuous variables were analyzed with the \( t \) test. Two-tailed \( P < .05 \) was considered statistically significant.

All statistical analyses were performed using GraphPad Prism version 4 for Macintosh (GraphPad Software).

RESULTS

From January 1997 through January 2011, 140 LSPDPs were performed (University of Bordeaux Segalen, \( n = 64 \); University of Barcelona, \( n = 76 \)).

Fifty-five patients (University of Bordeaux Segalen, \( n = 25 \); University of Barcelona, \( n = 30 \)) underwent LSPDP on an intention-to-treat basis with SVP. Eighty-five patients (University of Bordeaux Segalen, \( n = 39 \); University of Barcelona, \( n = 46 \)) underwent LSPDP with WT.

CLINICOPATHOLOGIC CHARACTERISTICS

The clinical and pathologic characteristics of all the patients are shown in Table 1.

No statistical differences were found between the SVP and WT groups regarding patient age, sex, body mass index (calculated as weight in kilograms divided by height in meters squared), and American Society of Anesthesiology score. However, the mean (SD) tumor size was significantly higher in the WT group (33.6 [19.7] mm vs 42.5 [29.9] mm; \( P < .001 \)).

Of the 140 LSPDPs performed, the most common diagnoses were cystic neoplasms in 53 patients (37.9\%) and neuroendocrine neoplasms in 44 patients (31.4\%), followed by intraductal papillary mucinous neoplasms in 22 patients (15.7\%). One patient in the SVP group had an in situ intraductal adenocarcinoma. Other histologic diagnoses in the WT group were epithelial cysts (\( n = 2 \)), an intrapancreatic spleen (\( n = 1 \)), nesidioblastosis (\( n = 1 \)), and intraductal dystrophy (\( n = 1 \)).

OPERATIVE OUTCOMES

Between the SVP and WT groups, the mean (SD) operative time (214.7 [66.7] minutes vs 199.2 [46.7] minutes; \( P = .11 \)) and mean (SD) blood loss (342.8 [223.5] mL vs 288.9 [172.6] mL; \( P = .11 \)) did not differ (Table 2). The rates of conversion to laparotomy were also similar (9\% vs 13\%; \( P = .48 \)).

Splenic preservation represented 89.3\% of all the LSPDPs. The success rate of spleen preservation was significantly higher with the SVP procedure (96.4\% vs 84.7\%)

<table>
<thead>
<tr>
<th>Table 1. Patient Population</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Variable</strong></td>
<td><strong>SVP</strong> (( n = 55 ))</td>
</tr>
<tr>
<td>Age, y</td>
<td>52.9 (12.2)</td>
</tr>
<tr>
<td>Female, No. (%)</td>
<td>44 (80)</td>
</tr>
<tr>
<td>ASA score</td>
<td>2.1 (0.7)</td>
</tr>
<tr>
<td>BMI</td>
<td>25.1 (4.6)</td>
</tr>
<tr>
<td>Tumor size, mm</td>
<td>33.6 (19.7)</td>
</tr>
<tr>
<td>Final histologic diagnosis, No. (%)</td>
<td></td>
</tr>
<tr>
<td>Cystic neoplasm</td>
<td>18 (32.7)</td>
</tr>
<tr>
<td>Neuroendocrine tumor</td>
<td>21 (38.2)</td>
</tr>
<tr>
<td>Solid pseudopapillary neoplasm</td>
<td>5 (9.1)</td>
</tr>
<tr>
<td>Intraductal papillary mucinous neoplasm</td>
<td>2 (3.6)</td>
</tr>
<tr>
<td>Inflammatory neoplasm</td>
<td>8 (14.5)</td>
</tr>
<tr>
<td>Intraductal adenocarcinoma</td>
<td>1 (1.8)</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
</tr>
</tbody>
</table>

Abbreviations: ASA, American Society of Anesthesiology; BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); LSPDP, laparoscopic spleen-preserving distal pancreatectomy; SVP, splenic vessel preservation; WT, Warshaw technique.

| Table 2. Intention-to-Treat Analysis of Intraoperative Outcomes |
|------------------|------------------|------------------|------------------|
| **Variable** | **SVP** (\( n = 55 \)) | **WT** (\( n = 85 \)) | **LSPDP** (\( n = 140 \)) | **SVP vs WT, \( P \) Value** |
| Operative time, mean (SD), min | 214.7 (66.7) | 199.2 (46.7) | | .11 |
| Blood loss, mean (SD), mL | 342.8 (223.5) | 288.9 (172.6) | | .11 |
| Conversion to laparotomy | 5 (9) | 11 (13) | 16 (11) | .48 |
| Success of spleen preservation | 53 (96.4) | 72 (84.7) | 125 (89.3) | .03 \( a \) |
| Conversion to WT | 12 (21.8) | | | |

Abbreviations: LSPDP, laparoscopic spleen-preserving distal pancreatectomy; SVP, splenic vessel preservation; WT, Warshaw technique.

©2013 American Medical Association. All rights reserved.
The purpose of this study was to compare the short-term outcomes between the preservation and the division of the splenic vessels during LSPDP in patients with benign or low-grade malignant tumors in the body/tail of the pancreas. This study represents one of the largest series of distal pancreatectomies with splenic conservation performed using a laparoscopic approach and, to our knowledge, the first study to compare the division procedure with the preservation of the splenic vessels using an intention-to-treat analysis and with a significant number of patients.

Data related to this laparoscopic procedure and conservation of the spleen are scarce. Our results from 140 LSPDPs confirm the feasibility, safety, and efficiency previously described in the literature.17,20,24 The overall rates of morbidity and PF (34.3% and 22.1%, respectively), as
well as the rate of conversion to laparotomy (11.4%) were similar to the rates described for laparoscopic distal pancreatectomy.

In patients with nonmalignant lesions in the body/tail of the pancreas, the preservation of the spleen is preferable for avoiding long-term complications related to a splenectomy,9-11 and several studies have reported the benefits of LSPDP compared with laparoscopic distal pancreatectomy in terms of intraoperative outcomes, postoperative collections and infections, and length of hospital stays.20,25

Between both techniques available to preserve the spleen, WT was reported to be faster and easier,3,17,20 but few studies are available in the literature to determine which technique is the most preferable for LSPDP (Table 5). Most of these studies included a small number of patients, described results from both open and laparoscopic approaches, and only reported outcomes from procedures that actually succeeded in preserving the spleen. To our knowledge, our study is the largest to compare WT with laparoscopic SVP with respect to the intention-to-treat principle.

Based on our study, both techniques were similar regarding the rates of overall morbidity, PF, and reoperation. Blood loss and operative times were also similar contrary to what has been previously reported.17 The rate of spleen conservation was significantly higher in patients who underwent the intention-to-treat SVP. Preservation of the splenic vessels was successful in 75% of the cases. In 22% of cases, splenic vessel injuries or difficulties during the dissection required a conversion to WT. This procedure is technically challenging and may...
not be possible if the tumor is located close to the splenic hilum, the vessels are embedded in the pancreatic gland, or local inflammation is present. However, failing to spare the splenic vessels does not necessarily compromise the conservation of the spleen. The spleen was able to be salvaged in a large proportion of patients by conversion to WT. Regarding the intraoperative complications that might have been attributable to surgical differences, the occurrence of bleeding or splenic infarction, requiring en-bloc splenectomy, did not differ between the 2 techniques.

Similarly to previous reports, spleen-related complications were recorded after undergoing WT (Table 5). The division of the splenic vessels represents a potential risk for splenic infarction when the blood supply to the spleen is not sufficiently recovered from the short gastric and left gastroepiploic vessels. With this procedure, 10.7% of our patients developed symptomatic splenic infarcts, which required reoperation for splenectomy in around half of these patients (4.7%). In a recent retrospective analysis with long-term follow-up on 158 patients who had undergone open spleen-preserving distal pancreatectomies using WT, the rate of reoperation for splenectomy owing to splenic infarction was 1.9%. Among the 65 patients with postoperative imaging, 23% had splenic infarcts and 25% had perigastric varices.30 It is still unclear whether postoperative control of splenic perfusion must be performed in asymptomatic patients undergoing LSPDP with WT. The occurrence of perigastric varices owing to the excision of the splenic artery and vein with the potential risk for bleeding could represent an additional argument for delayed systematic postoperative imaging controls. Sinistral portal hypertension30 has been reported in other publications that evaluated hemodynamic changes in splenogastric circulation after ligation of the splenic vessels.31,32 Miura et al31 reported a 70% rate of perigastric varices and a 20% rate of submucosal varices after WT, as well as 1 patient with gastrointestinal bleeding.

The length of hospital stay was significantly shorter in patients who underwent WT. This was already mentioned in a previous study26 and could be partially explained by the occurrence of spleen-related complications associated with WT. Other complications, especially PFs, did not differ between the techniques. Furthermore, patients with splenic infarcts sometimes required a readmission and reoperation for splenectomy, which increased the overall length of hospital stay and affected the cost-effectiveness of the procedure.

Regarding the adverse events related to division, preservation of the splenic vessels appears to be the preferable technique. Both techniques are comparable in terms of intraoperative and postoperative morbidity, but the SVP procedure provided the best chance to conserve the spleen. We think that this procedure should be attempted when possible and switched to WT in cases of accidental bleeding or difficulties during dissection. Biases cannot be excluded based on the retrospective nature of this study. The mean tumor size was significantly higher in patients who underwent sacrifice of the splenic vessels, which suggests that preservation of the vessels might have been more technically challenging in these cases. Prospective studies are necessary to confirm and validate these results through long-term follow-up.

In conclusion, this large, bicentric retrospective study confirms that LSPDP is safe, feasible, and efficient. The comparison of both techniques for spleen conservation showed that the preservation of the splenic vessels was associated with an improved rate of spleen conservation and a reduced hospital stay without increased morbidity. The spleen-related complications related to WT should lead to a surgical preference for the laparoscopic spleen and splenic vessel-preserving distal pancreatectomy in selected patients with benign or low-grade malignant tumors in the body/tail of the pancreas.

Accepted for Publication: September 6, 2012.
Published Online: November 19, 2012. doi:10.1001/jamasurg.2013.768

Correspondence: Jean-Philippe Adam, Service de Chirurgie Digestive, Hôpital Saint-André, 1 rue Jean Burguet, 33075 Bordeaux, France (jpadam1@free.fr).

Author Contributions: Study concept and design: Adam, Jacquin, Fernández-Cruz, and Sa-Cunha. Acquisition of data: Adam, Jacquin, Laurent, Collet, Masson, and Fernández-Cruz. Analysis and interpretation of data: Adam, Jacquin, and Sa-Cunha. Drafting of the manuscript: Adam and Sa-Cunha. Critical revision of the manuscript for important intellectual content: Adam, Jacquin, Laurent, Collet, Masson, Fernández-Cruz, and Sa-Cunha. Statistical analysis: Adam and Jacquin. Administrative, technical, and material support: Laurent and Collet. Study supervision: Masson, Fernández-Cruz, and Sa-Cunha.

Conflict of Interest Disclosures: None reported.

Previous Presentations: This article was presented in part at the 7th French Congress of Digestive and Hepatobiliary Surgery; November 30, 2011; Paris, France; at the Annual French Meeting of Hepatogastroenterology and Digestive Oncology; March 15, 2012; Paris, France; and at the 10th World Congress of the International Hepato-Pancreato-Biliary Association; July 5, 2012; Paris, France.


REFERENCES


JAMA SURG/VOL 148 (NO. 3) MAR 2013 WWW.JAMASURG.COM

©2013 American Medical Association. All rights reserved.