Impact of Preoperative Briefings on Operating Room Delays

A Preliminary Report

Shantanu Nundy, MD; Arnab Mukherjee, MD; J. Bryan Sexton, PhD; Peter J. Pronovost, MD, PhD; Andrew Knight, MBA; Lisa C. Rowe, RN, DNSc; Mark Duncan, MD; Dora Syin, MD; Martin A. Makary, MD, MPH

Hypothesis: Preoperative briefings have the potential to reduce operating room (OR) delays through improved teamwork and communication.

Design: Pre-post study.

Setting: Tertiary academic center.

Participants: Surgeons, anesthesiologists, nurses, and other OR personnel.

Intervention: An OR briefings program was implemented after training all OR staff in how to conduct preoperative briefings through in-service training sessions. During the preoperative briefings, the attending surgeon led OR personnel in a 2-minute discussion using a standardized format designed to familiarize caregivers with each other and the operative plan before each surgical procedure.

Main Outcome Measures: The OR Briefings Assessment Tool was distributed to OR personnel at the end of each operation. Survey items questioned OR personnel about unexpected delays during each procedure and the relationship between communication breakdowns and delays. Responses were compared before and after the initiation of the preoperative briefings program.

Results: The use of preoperative briefings was associated with a 31% reduction in unexpected delays; 36% of OR personnel reported delays in the preintervention period, and 25% reported delays in the postintervention period (P < .04). Among surgeons alone, an 82% reduction in unexpected delays was observed (P < .001). A 19% reduction in communication breakdowns leading to delays was also associated with the use of briefings (P < .006).

Conclusions: Preoperative briefings reduced unexpected delays in the OR by 31% and decreased the frequency of communication breakdowns that lead to delays. Preoperative briefings have the potential to increase OR efficiency and thereby improve quality of care and reduce cost.

Author Affiliations are listed at the end of this article.
The purpose of the briefings is to formulate and share the operative plan, to promote teamwork, to mitigate hazards to patients, to reduce preventable harm, and to ensure all required equipment is available. However, the impact of OR briefings on delays is unknown. The specific aim of this study was to evaluate OR delays before and after the introduction of the OR briefing tool.

METHODS

STUDY DESIGN AND POPULATION

We used a pre-post design to evaluate the impact of briefings on operative delays. The preintervention period was 2 months, the intervention period was 3 months, and the postintervention period was 2 months. To evaluate delays, we used a case-based version of the Safety Attitudes Questionnaire (SAQ, OR version) called the OR Briefing Assessment Tool (ORBAT), from May through November 2005. The study setting was the general ORs of an academic medical center (the Johns Hopkins Bayview Medical Center) where a defined set of 14 surgeons operate (7 general surgeons, 2 plastic surgeons, 3 neurosurgeons, and 2 urologic surgeons).

Of these 14 surgeons, 11 agreed to implement briefings and formed the study population (6 general surgeons, 2 plastic surgeons, 2 neurosurgeons, and 1 urologic surgeon). The ORBAT was administered to OR staff, including physicians and nurses, at the end of each operation performed by a participating surgeon. Sampling was not used owing to the small sample sizes for diverse health care provider roles in the OR, which would threaten the generalizability of the data. Instead, a high response rate was sought to capture the representative assessments of each caregiver type in the OR.

OR DELAYS

To evaluate delays we surveyed OR staff using the ORBAT tool at the end of each procedure. Delays were measured with 2 ORBAT questions: (1) “There was an unexpected delay related to the case” and (2) “Communication breakdowns that lead to delays in starting surgical procedures are common.” We included all caregiver assessments of delays, rather than just 1 response per operation. The study was not designed to match respondents in the preintervention and postintervention periods.

OR BRIEFING ASSESSMENT TOOL

Survey questions were developed by generating a case-based version of the SAQ, team and patient-safety-related items, which we have found to be associated with outcomes and error rates. The 17-question survey included questions relating the quality of teamwork and communication among health care providers in the OR and reports of delays during a procedure and in the institution overall. Response options for each item ranged from 1 (disagree strongly) to 5 (agree strongly).

THE BRIEFING PROGRAM

The OR briefing checklist, OR Briefing 5, is a tool to enhance communication among OR team members and improve patient safety (Figure 1). Our 2-minute OR briefing familiarizes health care providers with each other and with the operative plan through 3 critical components: each member of the OR team states his or her name and role; the surgeon leads the “timeout” as required by the Joint Commission on the Accreditation of Healthcare Organizations to identify critical components of the operation, including the surgical site; and the care teams discuss and mitigate potential safety hazards.

At the beginning of the intervention period, all OR staff were trained in how to conduct briefings through in-service training sessions using a standardized format that has been described previously. Training sessions were performed at a surgical faculty meeting, a departmentwide staff meeting, and a nursing administration meeting for all OR nurses and technicians. A surgeon champion (M.A.M.) also met individually with each surgeon in the program. An independent study coordinator observed each surgical procedure to evaluate compliance with briefings in the OR during the study period.

STATISTICAL ANALYSIS

The unit of analysis was the clinician. We report the percentage agreement (agree slightly + agree strongly) for items in the preintervention and postintervention periods. Using a t test, we analyzed pre-post differences in responses and percentage agreement for the 2 OR delay items on the ORBAT survey instrument. A response of “neutral” was interpreted as the survey respondent not having enough information to make a definitive assessment and was accordingly excluded from the analysis. All statistical analyses were performed using SPSS statistical software, version 13.0 (SPSS Inc, Chicago, Illinois).

The preintervention ORBAT response rate was 85.0% (306 of 360 participants), and the postintervention response rate was 75.3% (116 of 154 participants). There were 422 total respondents, including surgical attending physicians (20.4%), surgical residents (14.5%), anesthesia attending physicians (9.5%), anesthesia residents (4.5%), certified registered nurse anesthetists (8.1%), scrub nurses (17.3%), circulating nurses (19.0%), medical students (3.8%), nurse assistants (1.0%), and “other” (2.0%) (Table 1). After excluding unmarked and neutral responses, there were 357 of the 422 responses (85%) to the statement “there was an unexpected delay related to the case” and 368 responses (87%) to “communication breakdowns that lead to delays in starting surgical procedures are common” (Table 2). Caregiver assessments of OR delays improved for both items: “there was an unexpected delay related to the case” (preintervention, 36% agreed; postintervention, 23% agreed; P < .04) (Table 3) and “communication breakdowns that lead to delays in starting surgical procedures are common” (preintervention, 80% agreed; postintervention, 65% agreed; P < .006) (Figure 2). Among surgeons alone, the percentage reporting unexpected de-
In our study, the use of OR briefings was associated with a 31% reduction in OR delays. Delays in the OR are a major component of the quality, efficiency, and work environment of surgical care. Decreased OR delays allow for increased surgical capacity, resulting in shorter waiting times for patients with acute illness (“add-on” cases), lower nurse turnover rates, and increased job satisfaction. These factors are often associated with safety because improved efficiency and capacity mean that more operations are performed during the daytime, when important backup personnel are readily available, and fewer operations are performed at night, when skeleton teams who may be unfamiliar with one another are more likely to work together. Thus, OR briefings have the potential to improve both quality and safety15 while decreasing costs and creating a more favorable and predictable work environment.

We have previously reported the positive impact of the OR briefings program on wrong-site surgery16 and OR culture.13 Here, we link an improvement in OR briefings program on wrong-site surgery16 and creating a more favorable and predictable work environment.

In this study, we found that OR delays also come.17,18 In this study, we found that OR delays also

Table 1. Respondent Characteristics

<table>
<thead>
<tr>
<th>Respondent Type</th>
<th>No. (%) of Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attending surgeon</td>
<td>86 (29.4)</td>
</tr>
<tr>
<td>Surgical resident</td>
<td>61 (14.5)</td>
</tr>
<tr>
<td>Attending anesthesiologist</td>
<td>40 (9.5)</td>
</tr>
<tr>
<td>Anesthesiology resident</td>
<td>19 (4.5)</td>
</tr>
<tr>
<td>Certified registered nurse anesthetist</td>
<td>34 (8.1)</td>
</tr>
<tr>
<td>Scrub nurse</td>
<td>73 (17.3)</td>
</tr>
<tr>
<td>Circulating nurse</td>
<td>80 (19.0)</td>
</tr>
<tr>
<td>Nurse assistant/physicians’ assistant</td>
<td>6 (1.4)</td>
</tr>
<tr>
<td>Medical student</td>
<td>16 (3.8)</td>
</tr>
<tr>
<td>Other/missing</td>
<td>7 (1.7)</td>
</tr>
<tr>
<td>Total</td>
<td>422 (100)</td>
</tr>
</tbody>
</table>

*Because of rounding, percentages do not sum to 100.

lays decreased from 38% to 7% from preintervention to postintervention (P<.001).

We recognize some important limitations to this study. First, we determined caregiver assessments of issues related to delays using the ORBAT, rather than measuring the duration of delays. Assessments are inherently subjective, and survey items are open to interpretation. We chose this method because it addresses the unexpected nature of the delays, allowing health care providers to decide whether delays were expected for the given operation (ie, a surgical exploration for a more invasive cancer than expected or a procedure in which a patient has an anatomical variation). Furthermore, scores on the SAQ have been associated with important clinical and operational outcomes in the OR.17 Second, we used a pre-post design without a control group, rather than a randomized design. We recognize the methodological weakness in our exclusion of a control group and our inability to track OR personnel at the surgical case level. Because nurses and anesthesiologists work with multiple surgeons, we believed a randomized design was not feasible in this early stage of the research, and the control group would likely be contaminated by OR personnel who were trained in briefings. The sample we chose allowed us to introduce the intervention to all the relevant personnel in 1 campaign. Nevertheless, an important lesson learned for future research and implementation of OR briefings is the need to focus on the surgeon as the unit of analysis, such that each surgeon is assigned to a control or experimental group and OR personnel are grouped with their surgeon for pre-post analyses. Third, not all the surgeons invited to implement the briefing program agreed to participate, introducing the possibility of selection bias. Finally, we studied a single academic medical center, and each institution has its own barriers to changing the culture and procedures of the OR.

We recognize some important limitations to this study. First, we determined caregiver assessments of issues related to delays using the ORBAT, rather than measuring the duration of delays. Assessments are inherently subjective, and survey items are open to interpretation. We chose this method because it addresses the unexpected nature of the delays, allowing health care providers to decide whether delays were expected for the given operation (ie, a surgical exploration for a more invasive cancer than expected or a procedure in which a patient has an anatomical variation). Furthermore, scores on the SAQ have been associated with important clinical and operational outcomes in the OR.17 Second, we used a pre-post design without a control group, rather than a randomized design. We recognize the methodological weakness in our exclusion of a control group and our inability to track OR personnel at the surgical case level. Because nurses and anesthesiologists work with multiple surgeons, we believed a randomized design was not feasible in this early stage of the research, and the control group would likely be contaminated by OR personnel who were trained in briefings. The sample we chose allowed us to introduce the intervention to all the relevant personnel in 1 campaign. Nevertheless, an important lesson learned for future research and implementation of OR briefings is the need to focus on the surgeon as the unit of analysis, such that each surgeon is assigned to a control or experimental group and OR personnel are grouped with their surgeon for pre-post analyses. Third, not all the surgeons invited to implement the briefing program agreed to participate, introducing the possibility of selection bias. Finally, we studied a single academic medical center, and each institution has its own barriers to changing the culture and procedures of the OR.

IMPLICATIONS

The use of OR briefings as a routine procedure to reduce preventable surgical risks and delays has many implications for practice and training. These data suggest that hospitals should consider implementing briefings as a strategy to improve clinical and economic outcomes in surgical patients. We have previously shown that there are significant differences in perceptions of teamwork in the OR. In a study of 2135 OR personnel in 60 hospitals, we found that surgeons rated nurses as having good teamwork 87% of the time, whereas nurses rated the teamwork of surgeons as positive 48% of the time.16 This discrepancy in perceptions of teamwork in the OR implies that strategies are needed to align expectations of teamwork among physicians and nurses. It was this finding that served as the im-

©2008 American Medical Association. All rights reserved.
petus to study the impact of briefings on OR culture. Strategies such as OR briefings may help toward reducing the discrepancy in perceptions of teamwork and the roles various health care providers serve in fostering teamwork. At our institution, OR briefings are conducted before all operative procedures and are taught to surgical and anesthesia residents as part of a patient safety curriculum.

Table 2. ORBAT Delay Items

<table>
<thead>
<tr>
<th>ORBAT Item</th>
<th>Mean Scorea (95% CI)</th>
<th>Difference</th>
<th>P Valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td>There was an unexpected delay related to the case</td>
<td>2.4 (2.3-2.6)</td>
<td>2.1 (1.8-2.4)</td>
<td>-0.3</td>
</tr>
<tr>
<td>Communication breakdowns that lead to delays in starting surgical procedures are common</td>
<td>3.9 (3.7-4.0)</td>
<td>3.4 (3.1-3.7)</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; ORBAT, Operating Room Briefing Assessment Tool.
aMean score on a scale of 1 to 5, with 5 indicating “agree strongly.” Responses of 3 or “neutral” were excluded from the analysis.
bThe t test was applied assuming equal variances.

Table 3. Unexpected Delays Reported Preintervention and Postintervention

<table>
<thead>
<tr>
<th>Respondents</th>
<th>% Reporting Unexpected Delaysa (95% CI)</th>
<th>RR Reduction, %</th>
<th>P Valueb</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>36 (30-42)</td>
<td>25 (17-33)</td>
<td>31</td>
</tr>
<tr>
<td>Surgeons (attending and residents)</td>
<td>38 (28-48)</td>
<td>7 (0-15)</td>
<td>82</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; RR, relative risk.
aPercentage agreement with the Operating Room Briefing Assessment Tool item “There was an unexpected delay related to the case” on a scale of 1 to 5, with 4 or 5 indicating agreement. Responses of 3 or “neutral” were excluded from the analysis.
bThe t test was applied assuming equal variances.

Figure 2. Percentage agreement for 2 delay-related items on the Operating Room Briefing Assessment Tool preintervention and postintervention: A, “There was an unexpected delay related to the case” and B, “Communication breakdowns that lead to delays in starting surgical procedures are common.” Asterisks indicate significance of difference in percentage agreement at P<.05.

Future Directions

The OR briefing tool we developed and used in this study is a framework for more specific checklists designed for individual specialties and operations. For example, in performing an organ transplant operation, a confirmation of the crossmatch result or organ blood type may be important. We are still exploring the relative benefits and risks of standardizing the briefing tool across all ORs or allowing local modification. Our hope is that the discussion and not the script of the OR briefing we used will be implemented to improve teamwork, identify and mitigate preventable harm, and increase efficiency. Ultimately, a customized checklist that is continually revisited and revised to meet the changing needs of ORs and surgical techniques will result in improved quality and safety.

Conclusions

The use of OR briefings was associated with a reduction in delays and communication failures that led to delays. Hospitals should consider implementing OR briefings as a strategy to improve OR efficiency and clinical and economic outcomes in surgical patients.

Accepted for Publication: May 25, 2007.

Author Affiliations: Quality and Safety Research Group, Department of Anesthesiology (Drs Nundy, Mukherjee, Sexton, Pronovost, Syin, and Makary); The Johns Hopkins University School of Medicine (Mr Knight); Department of Surgery, Johns Hopkins Bayview Medical Center (Dr Duncan); Center for Surgical Outcomes Research,
Department of Surgery (Drs Pronovost, Syin, and Makary); Department of Health Policy and Management, School of Medicine (Drs Pronovost and Makary); Bloomberg School of Public Health, School of Nursing (Drs Pronovost and Rowen), The Johns Hopkins University, Baltimore, Maryland; and School of Medicine and School of Management, Yale University, New Haven, Connecticut (Dr Mukherjee). Dr Nundy is now with the Department of Internal Medicine, The University of Chicago Medical Center, Chicago, Illinois. Dr Mukherjee is now with the Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University.

Correspondence: Martin A. Makary, MD, MPH, Department of Surgery, The Johns Hopkins University School of Medicine, 1909 Thames St, 2nd floor, Baltimore, MD 21231 (mmakary1@jhmi.edu).

Author Contributions: Drs Nundy, Rowen, Duncan, and Makary had full access to the data in the study and take responsibility for the integrity of the data and the accuracy of the analysis. Study concept and design: Sexton, Pronovost, Rowen, and Makary. Acquisition of data: Syin. Analysis and interpretation of data: Nundy, Mukherjee, Pronovost, Knight, and Duncan. Drafting of the manuscript: Nundy, Mukherjee, Pronovost, Knight, and Sexton. Critical revision of the manuscript for important intellectual content: Nundy, Pronovost, Knight, and Syin. Study supervision: Nundy, Pronovost, and Makary.

Financial Disclosure: None reported.

REFERENCES

5. Torkki PM, Marjamaa RA, Torkki MI, Kallio PE, Kivela OA. Use of anesthesia induction rooms can increase the number of urgent orthopedic cases completed within 7 hours. Anesthesiology. 2005;103(2):401-405.

