An Optimal Algorithm for Intraoperative Parathyroid Hormone Monitoring

Melanie L. Richards, MD; Geoffrey B. Thompson, MD; David R. Farley, MD; Clive S. Grant, MD

Background: A minimally invasive approach to primary hyperparathyroidism is equivalent to bilateral exploration when intraoperative parathyroid hormone (IOPTH) monitoring is used. The optimal strategy for the monitoring has been debated.

Hypothesis: There exists an optimal strategy for IOPTH monitoring.

Design: Retrospective study.

Setting: Tertiary referral hospital.

Patients and Methods: A total of 1882 patients underwent parathyroidectomy for primary hyperparathyroidism with IOPTH monitoring. Successful exploration was defined as a 50% or more decline in IOPTH level from baseline and a normal or near-normal IOPTH level at 10 minutes postexcision. These results were compared with those of alternative strategies for IOPTH monitoring, including a 50% decline at 10 minutes, 50% decline at 5 minutes, and normal IOPTH levels at 10 minutes, using the preoperative parathyroid level as baseline.

Results: A curative operation was performed in 1830 patients (97.2%). The current strategy had a sensitivity of 96% and an accuracy of 95%. Multiglandular disease was present in 271 patients (14.5%); 134 of 1858 patients (7.2%) whose outcomes failed to reach curative criteria had confirmed multiglandular disease. Using only a 50% decline from baseline as the curative criterion would result in a failed operation in 22.4% of patients with multiglandular disease. A 50% decline at 10 minutes was 96% sensitive and 94% accurate. A 5-minute value was 79% sensitive and 80% accurate. With use of the 5-minute value, unnecessary bilateral exploration would have been performed in 272 of 1460 patients (18.6%) compared with 62 of 1750 patients (3.5%) when using a 10-minute value. A normal 10-minute value is 91% sensitive and 90% accurate.

Conclusions: A 10-minute postexcision IOPTH level that decreased 50% from baseline and is normal or near normal is highly successful. Relying on a 50% decrease alone increases the rate of operative failure in patients with multiglandular disease.

morphologic finding and that the morphology does not necessarily predict function.

In our practice, we also had observed the presence of MGD despite a 50% drop in the IOPTH level. Excision of additional hypercellular glands coincided with biochemically significant drops in the IOPTH level to normal or near normal. This suggested that these morphologically enlarged glands were producing an excess of IOPTH and that it was necessary to develop more stringent criteria for IOPTH monitoring. Our practice algorithm was modified to include a normal or near-normal IOPTH level at the completion of the operation. The ideal timing for determination of the postexcision IOPTH level was not known. The purpose of this study was to compare IOPTH monitoring techniques to define an optimal algorithm for cure.

METHODS

A prospective database of 2925 patients who underwent an operation for primary HPT from June 1998 to November 2008 at the Mayo Clinic, Rochester, Minnesota, was retrospectively reviewed to identify patients who had IOPTH monitoring during a primary operation. The patients medical records were reviewed for demographics, parathyroid hormone (PTH) levels, serum calcium levels, imaging results, operative findings, pathologic findings, and outcomes.

The preferred Mayo protocol for IOPTH monitoring consisted of determination of IOPTH levels at baseline, 5 minutes postexcision, and 10 minutes postexcision of the suspicious parathyroid gland or glands. Blood samples were obtained from the jugular vein, radial artery, or a peripheral vein. The baseline jugular vein samples were obtained either before dissection or after mobilization of the abnormal gland. Peripheral vein samples were obtained precission. The timing of each postexcision IOPTH test was confirmed to be at 3, 10, 15, or more than 20 minutes. Parathyroid hormone values recorded in picomoles per liter were converted to picograms per milliliter using a conversion factor of 9.03. Intraoperative PTH levels were measured using a standard immunoradiometric assay with either the Roche Cobas e411 (Roche Diagnostics Corporation, Indianapolis, Indiana) analyzer.

Successful exploration was defined as a 50% or more decline from baseline to a normal or near-normal IOPTH level at 10 minutes. Normal IOPTH was considered a level within the reference range. Due to variability in IOPTH levels, near normal was defined by the surgeon. If a surgeon considered the operation curative with a near-normal IOPTH level, the data were assessed at that end point. A patient who met curative criteria at 5 minutes was assumed to meet those criteria at 10 minutes. Patients with imaging results that were highly suspicious for bilateral parathyroid disease underwent bilateral exploration. Those with equivocal imaging results on the contralateral side underwent bilateral exploration when the IOPTH level did not meet curative criteria after a focused exploration. Patients who met the curative criteria after a focused exploration did not undergo bilateral exploration.

A true-positive test result was defined as the IOPTH level confirming cure and the patient was cured (no hypercalcemia at 6 months or longer follow-up confirmed with biochemical results or personal communication of biochemical results via survey or telephone conversation with the patient). A true-negative test result was defined as the IOPTH level confirming the presence of additional hypercellular parathyroid tissue and additional hypercellular tissue was confirmed either intraoperatively or on biochemical testing. A false-positive test result was defined as the IOPTH level confirming cure but the patient was not cured. A false-negative (FN) test result was defined as the IOPTH level suggesting the presence of additional hypercellular parathyroid tissue but no additional hypercellular tissue was confirmed either intraoperatively or on biochemical testing. Patients in whom the IOPTH levels did not meet curative criteria and the surgeon did not proceed with a bilateral exploration were classified according to the curative criteria. For example, the surgeon removes a solitary adenoma, the IOPTH level decreases by 40%, the surgeon does not proceed with a bilateral exploration, and the patient is cured. This patient’s IOPTH level would be classified as a FN. Patients who were retrospectively determined to have an uncertain diagnosis of primary HPT or an uncertain cure were not classified. Patients who were determined to have falsely low baseline PTH levels secondary to possible devascularization or hemolysis were excluded from IOPTH analysis.

The IOPTH test results were used to compare alternative strategies for IOPTH monitoring by determining the sensitivity, specificity, positive predictive value (PPV), negative predictive value, and accuracy. The strategies were selected based on potential economic advantages from less testing or shorter duration of testing. They were also selected based on the current practice and controversies that exist with IOPTH monitoring. Specifically, the results using a 50% decline of the IOPTH level from baseline were compared with those found using a 10-minute normal or near-normal IOPTH level, with each of the following strategies for defining cure:

1. 50% decline from the baseline IOPTH level at 10 minutes postexcision.
2. 50% decline from the baseline IOPTH level at 5 minutes postexcision.
3. Single 10-minute postexcision IOPTH level that is normal.
4. Use of the preoperative PTH level as the baseline value, with a 50% decline in IOPTH level at 10 minutes postexcision.

Statistical analysis was performed with SPSS version 14.0 (SPSS Inc, Chicago, Illinois). P < .05 was considered significant. The study was approved by the Mayo Clinic Institutional Review Board.

There were 1882 patients (age, 10-97 years; mean, 61 years) who underwent a primary parathyroidectomy for primary HPT using IOPTH. Many (74.7%) were women. Data on follow-up for 6 months or longer were available on 98.9% of the patients. The mean (SD) preoperative serum calcium level was 11.0 (0.7) mg/dL (reference range, 8.9-10.1 mg/dL) and the mean (SD) preoperative PTH level was 161 (302) pg/mL (reference range, 15-65 pg/mL). (To convert to millimoles per liter, multiply by 0.25.) There were an additional 4 patients who had an uncertain diagnosis and 567 who underwent a reoperation who were excluded.

IMAGING

Parathyroid subtraction scintigraphy was performed in 1731 patients (92.0%) and neck ultrasonography was obtained in 581 patients (30.9%). Fourteen patients (0.7%) underwent parathyroidectomy without any
The parathyroid subtraction imaging had a sensitivity of 85% and an accuracy of 78%. Neck ultrasonography had a sensitivity of 58% and an accuracy of 55%. There were 529 patients who underwent both parathyroid subtraction scintigraphy and ultrasonography (Figure). Negative or discordant imaging results occurred in 57.3% of the patients (303 of 529) who underwent both studies. Imaging results that were concordant for localization on both studies were correct in 94.7% of the patients (214 of 226).

USE OF IOPTH

Intraoperative PTH level was used to define cure in 1882 patients. Baseline IOPTH levels were obtained in 1834 patients (97.4%). The mean (SD) baseline IOPTH level was 278 (422) pg/mL. Five- and 10-minute IOPTH levels were obtained in 1484 (78.8%) and 1809 (96.1%) patients, respectively; the mean (SD) levels were 64 (91) pg/mL and 39 (88) pg/mL, respectively. Fifteen-minute samples were obtained in 20 patients. Seven of these patients had FN 10-minute values and a 15-minute value that met curative criteria; the surgeon did not proceed with bilateral exploration. Sixteen patients had an IOPTH level at baseline that was deemed to be falsely low relative to the preoperative PTH level. These baseline PTH values were less than 50% of the preoperative PTH level and were normal, ranging from 14 to 51 pg/mL (mean [SD], 36 [10] pg/mL). In these cases, the surgeon used the preoperative PTH level as the baseline.

PATHOLOGY

In 1874 patients, a single adenoma was excised in 1602 patients (85.5%) and MGD was found in 271 (14.5%). Ten patients had negative explorations. The number of parathyroid glands excised in patients with MGD included 2 in 130 patients, 2½ in 8 patients, 3 in 104 patients, and 3½ in 4 patients. Multiple endocrine neoplasia 1 was confirmed in 26 of 271 patients (9.6%) with MGD; 2 patients (0.7%) were diagnosed with multiple endocrine neoplasia 2. The mean (SD) weight of the excised parathyroid glands was 751 (1073) mg for the first gland, 240 (311) mg for the second, and 109 (128) mg for the third. Overall, the mean (SD) weight of 3963 excised glands was 663 (1011) mg.

IOPTH MONITORING STRATEGIES

The Mayo criteria had a sensitivity of 96%, PPV of 99%, and an accuracy of 99% (Table 1). A 50% decline from baseline at 10 minutes had a sensitivity of 96%, PPV of 97%, and an accuracy of 94%. There were 134 of 1858 patients (7.2%) with MGD who failed to reach the Mayo criteria for cure. Using only a 10-minute postexcision 50% decline from baseline would have resulted in a failed operation in 30 of 134 patients (22.4%) with MGD (P < .05). There were 121 of 1654 patients (7.3%) who met the Mayo criteria for cure who had a 50% decline to a near-normal PTH level at 10 minutes (mean [SD], 77 [33] pg/mL), and 86.7% of these patients had more than a 70% decline.

Theoretically, 66 of 1858 patients (3.6%) would have undergone unnecessary bilateral explorations because of a FN IOPTH using the Mayo criteria (Table 2). Failing to decline to 50% from baseline at 10 minutes, used as the only criteria, would have led to an equivalent number of unnecessary bilateral explorations in 62 of 1750 patients (3.5%). In practice, 20 of 66 patients (30.3%) in the Mayo FN group did not undergo bilateral exploration because the surgeon determined that they were cured, despite not reaching a 50% decline in IOPTH level. The baseline IOPTH level in this group was less than 70 pg/mL in 14 patients (70.0%). One patient had a 10-minute IOPTH level that was erroneously elevated (33% above baseline); a second test showed a curative decline. The remaining 19 patients had a mean (SD) 10-minute decline of 35% (5%) from baseline. Based on the biochemical findings, test results on these patients were included in the calculations as FN.

Use of baseline and 5-minute values would have a sensitivity of 79%, a PPV of 98%, and an accuracy of 80%. Unnecessary bilateral exploration would have been performed in 272 of 1460 patients (18.6%). A single 10-minute IOPTH level that is normal has a sensitivity of 91%, a PPV of 98%, and an accuracy of 90%; this would result in 151 of 1800 patients (8.4%) undergoing unnecessary bilateral exploration.

Using the preoperative PTH level as a baseline results in a lower mean PTH value compared with the IOPTH level as baseline (161 vs 278 pg/mL; P < .001). This method has a sensitivity of 82%, a PPV of 98%, and an accuracy of 82%. Use of the preoperative PTH level as the baseline would result in 422 of 1773 patients (23.8%) having less than a 50% decline in the 10-minute postexcision IOPTH level. This compares with 182 of 1769 patients (10.3%) with less than a 50% decline from the baseline PTH when it is obtained intraoperatively, resulting in an increased likelihood of unnecessary bilateral exploration.

OUTCOMES

A curative operation was performed in 1830 patients (97.2%). Patients with a solitary adenoma had a successful operation 99.6% of the time compared with 84.9% of
the time in patients with MGD (Table 3). There were 5 operative failures; it was not known whether the patients had a solitary adenoma or MGD. Of the 41 patients with MGD who did not have a curative operation, 22 (53.7%) had true-negative results and 18 (43.9%) had false-positive results; complete IOPTH test results were not available on 1 patient (2.4%). In 30 operative failures secondary to MGD, the patients had a single parathyroid gland removed at the primary operation. Five patients had 2 glands removed and 6 patients had 3 glands removed. There was no relationship between operative success and age, sex, serum calcium level, or preoperative PTH level (P > .05). Three patients experienced recurrent laryngeal nerve injuries. The length of hospitalization was less than 24 hours in 91.0% of the patients (n=1713). Three patients developed recurrent primary HPT, defined as hypercalcemia and hyperparathyroidism occurring more than 6 months postoperatively.

To improve outcomes in primary HPT, investigators have been challenged to define the optimal method for monitoring IOPTH. This study has defined a practice for IOPTH monitoring that had limited imaging, reduced the number of IOPTH tests, minimized bilateral explorations, and cured 97.2% of the patients.

The Mayo protocol had the highest sensitivity (96%), PPV (99%), and accuracy (95%) compared with the other strategies evaluated here. While use of only a 50% drop at 10 minutes was competitive in performance, there was 1 difference: the IOPTH monitoring failure rate in patients with MGD would increase by 22%. The clinical effect of this finding is dependent on the incidence of MGD. Our 14.5% incidence of MGD is comparable to rates reported by most other groups.11-13 The Miami group5 reported a 4% incidence of MGD.

The Miami group uses the highest preincision or preexcision IOPTH level as the baseline to potentially reduce unnecessary bilateral exploration secondary to PTH level spikes related to manipulation. It can be argued that the highest baseline IOPTH level is not a true reflection of the patient’s PTH level. A 50% decline from this falsely elevated PTH level can be postulated to result in increased failure; however, the success is 97%.2 This success may be attributed to the low rate of MGD in that study. Irvin et al8 also noted that the Miami criterion had a decreased performance in MGD, with sensitivity, specificity, and accuracy of 90%, 94%, and 92%, respectively. Intraoperative PTH monitoring with the Mayo protocol has a sensitivity, PPV value, and accuracy of 95%, 100%, and 97%, respectively, in MGD.14 The variation in rates of MGD may be related to regional distributions of familial disease, vitamin D deficiency, patient selection, or referral patterns. There has also been criticism that centers with higher rates of MGD assess only parathyroid morphologic characteristics and not function. This controversy stems from the inability of surgeons to reach a consensus on the definition of MGD—whether it should be based on function, histopathologic features, or size. Our 14.5% incidence of MGD was based on function, with 7.2% of the patients showing multigland uptake on parathyroid scintigraphy and 7.2% confirmed to have MGD on IOPTH measurement alone. Thirty patients who did not have a curative operation had a single hypercellular gland removed at the primary operation and were classified as having MGD. It could be postulated that there was an over-call on his-

Table 1. Comparison of Mayo Protocol With Other Proposed Strategies for Using IOPTH Testing to Define Cure in Primary Hyperparathyroidism

<table>
<thead>
<tr>
<th>Strategy</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayo protocol (N=1858)</td>
<td>96</td>
</tr>
<tr>
<td>50% Decline from IOPTH baseline at 5 min (n=1460)</td>
<td>79</td>
</tr>
<tr>
<td>50% Decline from IOPTH baseline at 10 min (n=1750)</td>
<td>82</td>
</tr>
<tr>
<td>Normal IOPTH at 10 min (n=1800)</td>
<td>91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Positive Predictive Value</th>
<th>Negative Predictive Value</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayo protocol (N=1858)</td>
<td>96</td>
<td>86</td>
<td>99</td>
<td>68</td>
<td>95</td>
</tr>
<tr>
<td>50% Decline from IOPTH baseline at 5 min (n=1460)</td>
<td>79</td>
<td>87</td>
<td>98</td>
<td>31</td>
<td>80</td>
</tr>
<tr>
<td>50% Decline from IOPTH baseline at 10 min (n=1750)</td>
<td>82</td>
<td>86</td>
<td>98</td>
<td>31</td>
<td>82</td>
</tr>
<tr>
<td>Normal IOPTH at 10 min (n=1800)</td>
<td>91</td>
<td>82</td>
<td>98</td>
<td>46</td>
<td>90</td>
</tr>
</tbody>
</table>

Abbreviations: IOPTH, intraoperative parathyroid hormone; PTH, parathyroid hormone.

Table 2. Results of IOPTH Monitoring Using Different Strategies for Defining Cure

<table>
<thead>
<tr>
<th>Strategy</th>
<th>True Positive</th>
<th>True Negative</th>
<th>False Positive</th>
<th>False Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayo protocol (N=1858)</td>
<td>1631 (87.8)</td>
<td>139 (7.5)</td>
<td>22 (1.2)</td>
<td>66 (3.6)</td>
</tr>
<tr>
<td>50% Decline from IOPTH baseline at 5 min (n=1460)</td>
<td>1047 (71.7)</td>
<td>123 (8.4)</td>
<td>18 (1.2)</td>
<td>272 (18.6)</td>
</tr>
<tr>
<td>50% Decline from IOPTH baseline at 10 min (n=1750)</td>
<td>1533 (87.6)</td>
<td>105 (6.0)</td>
<td>50 (2.9)</td>
<td>62 (3.5)</td>
</tr>
<tr>
<td>Normal IOPTH at 10 min (n=1800)</td>
<td>1492 (82.9)</td>
<td>129 (7.2)</td>
<td>28 (1.6)</td>
<td>151 (8.4)</td>
</tr>
</tbody>
</table>

Abbreviations: See Table 1.
Our study found that IOPTH monitoring improved success rates and reduced the risk of FN compared to surgical strategies. We observed a 7% decrease in the FN rate for patients undergoing IOPTH monitoring, indicating that this technique is effective in identifying MGD and reducing unnecessary exploration.

In conclusion, IOPTH monitoring is a valuable tool in the management of primary HPT. It enables surgeons to make informed decisions regarding surgical approach and reduces the risk of surgical complications. Further research is needed to explore the long-term outcomes and cost-effectiveness of IOPTH monitoring in this patient population.

To determine the optimal protocol for IOPTH monitoring, we would consider factors such as the baseline PTH level, the rate of decline, and the time to normalization. These factors will be specific to each patient and may vary depending on the surgical approach and institutional practices.

We recommend that surgeons incorporate IOPTH monitoring into their preoperative evaluation of patients with primary HPT. This will help to improve surgical outcomes and decrease the risk of complications associated with MGD.

Table 3. Patient Characteristics Associated With a Curative Operation

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Cure (n=1830)</th>
<th>Persistent HPT (n=53)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD), y</td>
<td>61.0 (14.0)</td>
<td>59.6 (13.0)</td>
<td>.37</td>
</tr>
<tr>
<td>Sex, No. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1371 (74.9)</td>
<td>26 (67.9)</td>
<td>.26</td>
</tr>
<tr>
<td>Male</td>
<td>456 (24.9)</td>
<td>17 (32.1)</td>
<td></td>
</tr>
<tr>
<td>Serum calcium, mean (SD), mg/dL</td>
<td>11.9 (0.7)</td>
<td>11.1 (0.1)</td>
<td>.24</td>
</tr>
<tr>
<td>Serum PTH, mean (SD), pg/mL</td>
<td>160 (296)</td>
<td>225 (451)</td>
<td>.12</td>
</tr>
<tr>
<td>Solitary adenoma, No. (%)</td>
<td>1595 (99.6)</td>
<td>7 (0.4)</td>
<td></td>
</tr>
<tr>
<td>MGD, No. (%)</td>
<td>230 (84.9)</td>
<td>41 (15.1)</td>
<td><.001</td>
</tr>
</tbody>
</table>

Abbreviations: HPT, primary hyperparathyroidism; MGD, multiglandular disease; PTH, parathyroid hormone.

SI conversion factor: To convert calcium to millimoles per liter, multiply by 0.25.

The success of IOPTH monitoring is dependent on accurate interpretation by the surgeon. It is crucial to have a standardized and reliable protocol for analyzing IOPTH results, taking into account the baseline PTH level and the rate of decline.

We found that IOPTH monitoring is effective in identifying MGD and reducing unnecessary exploration. Further research is needed to explore the long-term outcomes and cost-effectiveness of this technique in the management of primary HPT.

Accepted for Publication: January 27, 2010.

Correspondence: Melanie L. Richards, MD, Department of Surgery, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (richards.melanie@mayo.edu).

Author Contributions: Study concept and design: Richards and Thompson. Acquisition of data: Richards and Grant. Analysis and interpretation of data: Richards, Farley, and Grant. Drafting of the manuscript: Richards. Critical revision of the manuscript for important intellectual content: Richards, Thompson, Farley, and Grant. Statistical analysis: Richards. Administrative, technical, and material support: Grant.

Previous Presentation: This study was presented at the Western Surgical Association 2009 Annual Meeting, November 9, 2009, San Antonio, Texas. Financial Disclosure: None reported.
REFERENCES